Skip to main content
Log in

SYNTHESIS, X-RAY STRUCTURE ANALYSIS, AND VIBRATIONAL SPECTRAL STUDIES OF 1-(3-((6-BROMOPYRIDO[2,3-d]PYRIMIDIN-4-YL) OXY)PHENYL)-3-CYCLOPENTYLUREA

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new pyrido[2,3-d]pyrimidine derivative 1-(3-((6-bromopyrido[2,3-d]pyrimidin-4-yl)oxy)phenyl)-3-cyclopentylurea is designed and synthesized. The final structure is characterized by 1H, 13C, and 2D NMR, MS, FTIR. In addition, the crystal structure of the title compound is determined by X-ray diffraction. With the 6-311G(2d,p) basis set, the molecule is further explored using density functional theory (DFT) by the B3LYP method. The final results show that the DFT optimized structure of the title molecule is consistent with the crystal structure determined by X-ray diffraction. The Hirshfeld surface analysis and the 2D fingerprint plot are given to support the quantitative analysis of intermolecular interactions and contacts generated by supramolecular accumulation in crystals. The interactions of the title molecule are analyzed by the natural bond orbital analysis. Finally, the molecular electrostatic potential and frontier molecular orbitals are further investigated using DFT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

REFERENCES

  1. F. Buron, J. Y. Mérour, M. Akssira, G. Guillaumet, and S. Routier. Eur. J. Med. Chem., 2015, 95, 76-95. https://doi.org/10.1016/j.ejmech.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  2. H. Elzahabi, E. S. Nossier, N. M. Khalifa, R. A. Alasfoury, and M. A. El-Manawaty. J. Enzyme Inhib. Med. Chem., 2018, 33, 546-557. https://doi.org/10.1080/14756366.2018.1437729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. J. W. Ellingboe, M. Antane, T. T. Nguyen, M. D. Collini, S. Antane, R. Bender, D. Hartupee, V. White, J. McCallum, C. H. Park, and A. Et. J. Med. Chem., 1994, 37, 542-550. https://doi.org/10.1021/jm00030a013

    Article  CAS  PubMed  Google Scholar 

  4. O. A. Abdelaziz, W. M. El Husseiny, K. B. Selim, and H. M. Eisa. Bioorg. Chem., 2019, 90, 103076. https://doi.org/10.1016/j.bioorg.2019.103076

    Article  CAS  PubMed  Google Scholar 

  5. A. S. Kalgutkar, D. A. Griffith, T. Ryder, H. Sun, Z. Miao, J. N. Bauman, M. T. Didiuk, K. S. Frederick, S. X. Zhao, C. Prakash, J. R. Soglia, S. W. Bagley, B. M. Bechle, R. M. Kelley, K. Dirico, M. Zawistoski, J. Li, R. Oliver, A. Guzman-Perez, K. K. C. Liu, D. P. Walker, J. W. Benbow, and J. Morris. Chem. Res. Toxicol., 2010, 23, 1115-1126. https://doi.org/10.1021/tx100137n

    Article  CAS  PubMed  Google Scholar 

  6. N. Kahriman, K. Peker, V. Serdaroğlu, A. Aydin, A. Usta, S. Fandakli, and N. Yayli. Bioorg. Chem., 2020, 99, 103805. https://doi.org/10.1016/j.bioorg.2020.103805

    Article  CAS  PubMed  Google Scholar 

  7. M. Lavanya, I. V. Asharani, and D. Thirumalai. Chem. Biol. Drug Des., 2019, 93, 464-472. https://doi.org/10.1111/cbdd.13434

    Article  CAS  PubMed  Google Scholar 

  8. A. E. Rashad, H. H. Sayed, A. H. Shamroukh, and H. M. Awad. Phosphorus, Sulfur Silicon Relat. Elem., 2005, 180, 2767-2777. https://doi.org/10.1080/104265090968118

    Article  CAS  Google Scholar 

  9. L. N. Bheemanapalli, R. R. Akkinepally, and S. R. Pamulaparthy. Chem. Pharm. Bull. (Tokyo), 2008, 56, 1342-1348. https://doi.org/10.1002/chir.20471

    Article  CAS  PubMed  Google Scholar 

  10. L. G. Marileo, M. A. Jorquera, M. Hernández, G. Briceño, M. de La Luz Mora, R. Demanet, and G. Palma. Appl. Soil Ecol., 2016, 101, 141-151. https://doi.org/10.1016/j.apsoil.2016.02.003

    Article  Google Scholar 

  11. W. T. Lambert, A. M. Buysse, and F. J. Wessels. Pest Manag. Sci., 2019, 76, 497-508. https://doi.org/10.1002/ps.5537

    Article  CAS  PubMed  Google Scholar 

  12. E. Leo, A. Krämer, A. Hochhaus, F. Krasniqi, R. Hehlmann, and A. Ho. Ann. Hematol., 2002, 81, 467-469. https://doi.org/10.1007/s00277-002-0505-0

    Article  CAS  PubMed  Google Scholar 

  13. Y. Wei, P. Yang, S. Cao, and L. Zhao. Arch. Pharm. Res., 2018, 41, 1-13. https://doi.org/10.1007/s12272-017-0979-x

    Article  CAS  PubMed  Google Scholar 

  14. L. Crotti, K. E. Odening, and M. C. Sanguinetti. Cardiovasc. Res., 2020, 116, 1542-1556. https://doi.org/10.1093/cvr/cvaa068

    Article  CAS  PubMed  Google Scholar 

  15. J. S. Fortin, J. Lacroix, M. Desjardins, A. Patenaude, É. Petitclerc, and R. C. Gaudreault. Bioorg. Med. Chem., 2007, 15, 4456-4469. https://doi.org/10.1016/j.bmc.2007.04.028

    Article  CAS  Google Scholar 

  16. J. Liu, Y. Li, X. Zhang, D. Cheng, W. Wei, C. Wu, Y. Xie, L. Xiong, and Z. Li. Chin. J. Chem., 2017, 35, 368-374. https://doi.org/10.1002/cjoc.201600711

    Article  CAS  Google Scholar 

  17. X. Zhang, X. G. Lu, and C. Cai. Green Chem., 2016, 18, 5580-5585. https://doi.org/10.1039/C6GC01742H

    Article  CAS  Google Scholar 

  18. E. Margiotta, C. Stephanie, G. Paragi, L. A. Santos, G. Paragi, S. Moro, C. F. Guerra, and F. Bickelhaupt. J. Chem. Inf. Model., 2020, 60, 1317-1328. https://doi.org/10.1021/acs.jcim.9b00946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. Z. Hernandes, S. M. T. Cavalcanti, D. R. M. Moreira, W. F. de Azevedo Jr., and A. C. L. Leite. Curr. Drug Targets, 2010, 11, 303-314. https://doi.org/10.2174/138945010790711996

    Article  CAS  Google Scholar 

  20. R. Adepu, R. Sunke, C. L. T. Meda, D. Rambabu, G. R. Krishna, C. M. Reddy, G. S. Deora, K. V. L. Parsa, and M. Pal. Chem. Commun., 2013, 49, 190-192. https://doi.org/10.1039/C2CC37070K

    Article  CAS  Google Scholar 

  21. B. Bernd, G. Bindu, and P. Solang. Patent WO 2010/097335, 2009.

  22. T. C. Leboho, S. F. van Vuuren, J. P. Michael, and C. B. de Koning. Org. Biomol. Chem., 2014, 12, 307-315. https://doi.org/10.1039/C3OB41798K

    Article  CAS  PubMed  Google Scholar 

  23. C. M. Lacbay, M. Menni, J. A. Bernatchez, M. Götte, and Y. S. Tsantrizos. Bioorg. Med. Chem., 2018, 26, 1713-1726. https://doi.org/10.1016/j.bmc.2018.02.017

    Article  CAS  Google Scholar 

  24. Z. Sun, H. Wang, K. Wen, Y. Li, and E. Fan. J. Org. Chem., 2011, 76, 4149-4153. https://doi.org/10.1021/jo2003715

    Article  CAS  PubMed  Google Scholar 

  25. P. Tanja, M. Marina, and V. Srinivasamurthy. Patent WO 2019/229464, 2019.

  26. S. Gupta, P. Chaudhary, L. Seva, S. Sabiah, and J. Kandasamy. RSC Adv., 2015, 5, 89133-89138. https://doi.org/10.1039/C5RA18080E

    Article  CAS  Google Scholar 

  27. X. Liu, D. Kang, P. Zhan, and Z. Wang. Patent CN 108409734, 2018.

  28. Y. Liu, Y. Zhao, Q. Ren, Z. Zhou, H. Chai, and C. Zhao. J. Mol. Struct., 2020, 1208, 127869. https://doi.org/10.1016/j.molstruc.2020.127869

    Article  CAS  Google Scholar 

  29. A. V. Ivachtchenko, P. M. Yamanushkin, O. D. Mitkin, and O. I. Kiselev. Mendeleev Commun., 2010, 20, 111/112. https://doi.org/10.1016/j.mencom.2010.03.016

    Article  CAS  Google Scholar 

  30. G. Sheldrick. Acta Crystallogr., Sect. A: Found. Adv., 2014, 70, C1437. https://doi.org/10.1107/S2053273314085623

    Article  Google Scholar 

  31. P. Geerlings, F. De Proft, and W. Langenaeker. Chem. Rev., 2003, 103, 1793-1874. https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  32. M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson. Gaussian09, Revision A. 1. Wallingford, CT: Gaussian Inc., 2009.

  33. B. J. Deppmeier, A. J. Driessen, T. S. Hehre, W. J. Hehre, J. A. Johnson, P. E. Klunzinger, J. M. Leonard, I. N. Pham, W. J. Pietro, and J. Yu. Spartan08. Irvine, CA: Wavefunction Inc., 2009.

  34. N. Kanagathara, F. MaryAnjalin, V. Ragavendran, D. Dhanasekaran, R. Usha, and R. G. S. Rao. J. Mol. Struct., 2021, 1223, 128965. https://doi.org/10.1016/j.molstruc.2020.128965

    Article  CAS  Google Scholar 

  35. Q. Wu, Y. Chen, D. Chen, and Z. Zhou. J. Mol. Struct., 2021, 1229, 129782. https://doi.org/10.1016/j.molstruc.2020.129782

    Article  CAS  Google Scholar 

  36. A. S. M. Gad El-Hak, A. A. K. Mohammed, A. F. Abdel Hakiem, and R. M. Mahfouz. Spectrochim. Acta, Part A, 2019, 222, 117200. https://doi.org/10.1016/j.saa.2019.117200

    Article  CAS  Google Scholar 

  37. R. I. Al-Wabli, K. S. Resmi, Y. S. Mary, C. Y. Panicker, M. I. Attia, A. A. El-Emam, and C. Van Alsenoy. J. Mol. Struct., 2016, 1123, 375-383. https://doi.org/10.1016/j.molstruc.2016.07.044

    Article  CAS  Google Scholar 

  38. S. Gatfaoui, N. Issaoui, T. Roisnel, and H. Marouani. J. Mol. Struct., 2019, 1191, 183-196. https://doi.org/10.1016/j.molstruc.2019.04.093

    Article  CAS  Google Scholar 

  39. Y. Lu, W. Xu, H. Sun, J. Jin, H. Liu, S. Jin, D. Wang, and M. Guo. J. Mol. Struct., 2019, 1178, 639-654. https://doi.org/10.1016/j.molstruc.2018.10.080

    Article  CAS  Google Scholar 

  40. H. Gomes, P. Rosina, P. Holakooei, T. Solomon, and C. Vaccaro. J. Archaeol. Sci., 2013, 40, 4073-4082. https://doi.org/10.1016/j.jas.2013.04.017

    Article  CAS  Google Scholar 

  41. V. Ferraresi-Curotto, G. A. Echeverría, O. E. Piro, and R. Pis-Diez. J. Mol. Struct., 2017, 1133, 436-447. https://doi.org/10.1016/j.molstruc.2016.12.018

    Article  CAS  Google Scholar 

  42. K. Karrouchi, S. Fettach, M. M. Jotani, A. Sagaama, S. Radi, H. A. Ghabbour, Y. N. Mabkhot, B. Himmi, M. El Abbes Faouzi, and N. Issaoui. J. Mol. Struct., 2020, 1221, 128800. https://doi.org/10.1016/j.molstruc.2020.128541

    Article  CAS  Google Scholar 

  43. L. V. de Freitas, C. C. P. Da Silva, J. Ellena, L. A. S. Costa, and N. A. Rey. Spectrochim. Acta, Part A, 2013, 116, 41-48. https://doi.org/10.1016/j.saa.2013.06.105

    Article  CAS  Google Scholar 

  44. P. F. Bernath and E. L. Sibert III. J. Phys. Chem. A, 2020, 124, 9991-10000. https://doi.org/10.1021/acs.jpca.0c09185

    Article  CAS  PubMed  Google Scholar 

  45. D. Luo, L. Ma, Z. Zhou, and Z. Huang. J. Mol. Struct., 2019, 1198, 126857. https://doi.org/10.1016/j.molstruc.2019.07.104

    Article  CAS  Google Scholar 

  46. M. Watanabe, H. Kajiwara, K. Awazu, and K. Aizawa. Surg. Today, 2001, 31, 626-633. https://doi.org/10.1007/s005950170097

    Article  CAS  PubMed  Google Scholar 

  47. K. Karrouchi, S. A. Brandán, Y. Sert, H. El-marzouqi, S. Radi, M. Ferbinteanu, M. E. A. Faouzi, Y. Garcia,and M. H. Ansar. J. Mol. Struct., 2020, 1219, 128541. https://doi.org/10.1016/j.molstruc.2020.128541

    Article  CAS  Google Scholar 

  48. M. J. Berman, B. M. Schmid, D. J. Mendlein, and N. Kaplan. US Patent 20060142265, 2006.

  49. L. Tiwari, V. Kumar, B. Kumar, and D. Mahajan. RSC Adv., 2018, 8, 21585-21595. https://doi.org/10.1039/c8ra03761b

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Guizhou Provincial Natural Science Foundation ([2020]1Y393) and the Science and Technology Program Platform for Talents of Guizhou Province ([2018]5781).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. -Y. Huang.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Russian Text © The Author(s), 2022, published in Zhurnal Strukturnoi Khimii, 2022, Vol. 63, No. 1, pp. 26-29.https://doi.org/10.26902/JSC_id85837

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, R.S., Mao, S.N., Liu, C.J. et al. SYNTHESIS, X-RAY STRUCTURE ANALYSIS, AND VIBRATIONAL SPECTRAL STUDIES OF 1-(3-((6-BROMOPYRIDO[2,3-d]PYRIMIDIN-4-YL) OXY)PHENYL)-3-CYCLOPENTYLUREA. J Struct Chem 63, 37–51 (2022). https://doi.org/10.1134/S002247662201005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002247662201005X

Keywords

Navigation