Skip to main content
Log in

Structural, spectral characterization, and topological study of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol was deliberated by ultraviolet–visible (UV–Vis) and Fourier transform infrared (FT-IR) spectroscopy techniques. Hirshfeld surface analysis was performed to analyze the contribution of intermolecular contacts in crystal structure of the studied Schiff base ligand. The plots of the highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the electrostatic potential (ESP) were used to research the nucleophilic and electrophilic attack sites for the Schiff base ligand. According to the ESP analysis, the electrophilic reactivity was mainly found in nitro and hydroxy groups attached to phenyl rings, while the nucleophilic attack was more concentrated on hydrogen atoms. Major contributions from molecular orbitals to the electronic transitions computed according to the time-dependent DFT (TD-DFT) method were investigated using chloroform as a solvent. The topological parameters; electron density, Laplacian of electron density, kinetic energy, electron potential energy density, total electron energy density, ellipticity, and hydrogen bond energy at the bond critical points have been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Code availability

Gaussian 09 Rev. A 11.4 package program, VEDA4 program, Multiwfn software.

References

  1. Koşar B, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2005) 2-Hydroxy-6-[(2-hydroxyphenylamino) methylene] cyclohexa-2, 4-dienone. Acta Crystallogr E 61:o1097–o1099

    Article  Google Scholar 

  2. Sun Y, Liu Z, Song R, Yu C, Hao Q, Xu L (2013) Synthesis, structure, vibrational spectral, nonlinear optical and electron-behavioral studies of N-(5-chloro-2- hydroxyphenyl)-(3-hydroxyphenyl)-methalimine. Opt Mater 35(12):2519–2526

    Article  CAS  Google Scholar 

  3. Jayabharathi J, Thanikachalam V, Venkatesh Perumal M (2012) Photophysical studies of fused phenanthrimidazole derivatives as versatile-conjugated systems for potential NLO applications. Spectrochim Acta A 92:113–121

    Article  CAS  Google Scholar 

  4. Thanthiriwatte KS, Nalin de Silva KM (2002) Non-linear optical properties of novel fluorenyl derivatives—abinitio quantum chemical calculations. J Mol Struct (Theochem) 617:169–175

    Article  CAS  Google Scholar 

  5. Sajan D, Hubert J, Jayakumar VS, Zaleski J (2006) Structural and electronic contributions to hyperpolarizabilityin methyl p-hydroxy benzoate. J Mol Struct 785:43–53

  6. Karthikeyan MS, Prasad DJ, Poojary B, Subrahmanya Bhat K, Holla BS, Kumari NS (2006) Synthesis and biological activity of Schiff and Mannich bases bearing 2,4-dichloro-5-fluorophenyl moiety. Bioorg Med Chem 14:7482–7489

    Article  CAS  PubMed  Google Scholar 

  7. Al-Omar MA, El-GE AA (2010) Synthesis of some new pyridine-2,6-carboxamide-derived Schiff bases as potential antimicrobial agents. Molecules 15:4711–4721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ünver Y, Deniz S, Çelik F, Akar Z, Küçük M, Sancak K (2016) Synthesis of new 1,2,4-triazole compounds containing Schiff and Mannich bases (morpholine) with antioxidant and antimicrobial activities. J Enzyme Inhib 31:89–95

    Article  Google Scholar 

  9. Azab ME, Rizk SA, Mahmoud NF (2016) Facile synthesis, characterization, and antimicrobial evaluation of novel heterocycles, Schiff bases, and N-nucleosides bearing phthalazine moiety. Chem Pharm Bull 64:439–450

    Article  CAS  Google Scholar 

  10. El-Faham A, Soliman SM, Ghabbour HA et al (2016) Ultrasonic promoted synthesis of novel s-triazine-Schiff base derivatives; molecular structure, spectroscopic studies and their preliminary anti-proliferative activities. J Mol Struct 1125:121–135

    Article  CAS  Google Scholar 

  11. El-GE AA, Sabrry NM, Abdalla MM, Abdel-Wahab BF (2009) Synthesis, antiarrhythmic and anticoagulant activities of novel thiazolo derivatives from methyl 2-(thiazol-2-ylcarbamoyl)acetate. Eur J Med Chem 44:725–735

    Article  Google Scholar 

  12. Ragab FA, Abdel Gawad NM, Georgey HH, Said MF (2013) Synthesis of novel 1,3,4-trisubstituted pyrazoles as anti-inflammatory and analgesic agents. Eur J Med Chem 63:645–654

    Article  CAS  PubMed  Google Scholar 

  13. Mohamed SF, Flefel EM, El-GE AA, A El-Shafy DN (2010) Anti-HSV-1 activity and mechanism of action of some new synthesized substituted pyrimidine, thiopyrimidine and thiazolopyrimidine derivatives. Eur J Med Chem 45:1494–1501

    Article  CAS  PubMed  Google Scholar 

  14. Rodriguez M, Ramos-Ortiz G, Maldonado JL, Herrera-Ambriz VM, Dominguez O, Santillan R, Farfan N, Nakatani K (2011) Structural, thermal and optical characterization of a Schiff base as a new organic material for nonlinear optical crystals and films with reversible noncentrosymmetry. Spectrochim Acta A Mol Biomol Spectrosc 79:1757–1761

    Article  CAS  PubMed  Google Scholar 

  15. O’Boyle NM, Tenderholt AL, Langner KM (2008) CCLIB: a library for packageindependent computational chemistry algorithms. J Comput Chem 29:839–845

    Article  PubMed  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford

  17. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  19. Yanai T, Tew D, Handy N (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  20. Keith T, Millam J (2009) GaussView, Version 5.0.9, Semichem. Inc., Shawnee Mission KS

  21. Guido CA, Mennucci B, Scalmani G, Jacquemin D (2018) Excited state dipole moments in solution: comparison between state-specific and linear-response TD-DFT values. J Chem Theory Comput 14(3):1544–1553

    Article  CAS  PubMed  Google Scholar 

  22. Turner MJ, McKinnon JJ, Wolff SK, Grimwood DJ, Spackman PR, Jayatilaka D, Spackman MA (2017) Crystal, Explorer, 17. University of Western Australia, Nedlands, Western Australia

    Google Scholar 

  23. Jamroz MH (2004) Vibrational energy distribution analysis. VEDA 4 program, Warasaw, Poland

  24. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33:580–592

    Article  PubMed  Google Scholar 

  25. Johnson ER, Keinan S, Sanchez PM, Garcia JC, Cohen AJ, Yang W (2010) Revealing noncovalent ınteractions. J Am Chem Soc 132:6498–6506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2005) 2-(3-Methoxysalicylideneamino)-1H-benzimidazole monohydrate. Acta Crystallogr E 61:423–424

    Article  Google Scholar 

  27. Albayrak Ç, Kaştaş G, Odabaşoğlu M, Frank R (2011) Probing the compound (E)-5-(diethylamino)-2-[(4-methylphenylimino)methyl]phenol mainly from the point of tautomerism in solvent media and the solid state by experimental and computational methods. Spectrochim Acta A Mol Biomol Spectrosc 81:72–78

    Article  CAS  PubMed  Google Scholar 

  28. Ebrahimipour SY, Sheikhshoaie I, Crochet A, Khaleghi M, Fromm KM (2014) A new mixed-ligand copper(II) complex of (E)-N’ -(2-hydroxybenzylidene) acetohydrazide: synthesis, characterization, NLO behavior, DFT calculation and biological activities. J Mol Struct 1072:267–276

    Article  Google Scholar 

  29. Halli MB, Sumathi RB, Kinni M (2012) Synthesis, spectroscopic characterization and biological evaluation studiesof Schiff’s base derived from naphthofuran-2-carbohydrazide with8-formyl-7-hydroxy-4-methyl coumarin and its metal complexes. Spectrochim Acta A Mol Biomol Spectrosc 99:46–56

    Article  CAS  PubMed  Google Scholar 

  30. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68:441–451

    Article  CAS  Google Scholar 

  31. Fei ETL, Biswas J, Datta B, Kumar D (2021) Computational studies of diindole-based molecules for organic bulk heterojunction solar devices using DFT and TD-DFT calculations. Struct Chem 32:1973–1984

    Article  CAS  Google Scholar 

  32. Schafer A (2000) Modern methods and algorithms of quantum chemistry, second ed., vol. 3 of NIC Johnvon Neumann Institute for Computing, Julich

  33. Hase Y (2003) Quantum chemical calculations and vibrational spectra of the hydroxytrifluoroborate anion. Spectrosc Lett 36:227–237

  34. Tamer Ö, Avcı D, Atalay Y (2014) Quantum chemical characterization of N-(2-hydroxybenzylidene) acetohydrazide (HBAH): a detailed vibrational and NLO analysis. Spectrochim Acta A Mol Biomol Spectrosc 117:78–86

    Article  CAS  PubMed  Google Scholar 

  35. Eşme A, Sagdinc SG (2019) Conformational, spectroscopic (FT-IR, FT-Raman, and UV-Vis), and molecular docking studies of N-(2-hydroxyethyl) succinimide. J Mol Struct 1195:451–461

    Article  Google Scholar 

  36. Albayrak Ç, Kaştaş G, Odabaşoğlu M, Frank R (2012) Survey of conformational isomerism in (E)-2-[(4-bromophenylimino)methyl]-5-(diethylamino)phenol compound from structural and thermochemical points of view. Spectrochim Acta 95:664–669

    Article  CAS  Google Scholar 

  37. Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman Frequencies of Organic Compounds. Wiley

    Google Scholar 

  38. Ristova M, Pejov L, Žugić M, Šoptrajanov B (1999) Experimental IR, Raman and ab initio molecular orbital study of the 4-methylbenzenesulfonate anion. J Mol Struct 482:647–651

    Article  Google Scholar 

  39. Tarı GÖ, Ceylan Ü, Ağar E, Eserci H (2016) Crystal structure, spectroscopic investigations and quantum chemical computational study of 5-(diethylamino)-2-((3-nitrophenylimino) methyl)phenol. J Mol Struct 1126:83–93

    Article  Google Scholar 

  40. Baranska H, Labudzinska A, Terpinski J (1987) Laser Raman spectroscopy: analytical applications, PWN Polish Scientific Pub

  41. Wojtkowaik B, Chabanel M (1977) Spectrochimie Moleculaire Technique et Documentation, Paris

  42. Pavia DL, Lampman GM, Kriz GS, Vyvyan JR (2009) Introduction to spectroscopy:a guide for students of organic chemistry. Brooks/Cole Cengage Learning, USA

    Google Scholar 

  43. Ağar AA, Tanak H, Yavuz M (2010) Experimental and quantum chemical calculational studies on 2-[(4-propylphenylimino)methyl]-4- nitrophenol. Mol Phys 108:1759–1772

    Article  Google Scholar 

  44. Sagdinc SG, Azkeskin C, Eşme A (2018) Theoretical and spectroscopic studies of a tricyclic antidepressant, imipramine hydrochloride. J Mol Struct 1161:169–184

    Article  CAS  Google Scholar 

  45. Bellamy LJ (1975) The infrared spectra of complex molecules, 3rd edn. Wiley, New York

    Book  Google Scholar 

  46. Tanak H (2011) Crystal structure, spectroscopy, and quantum chemical studies of (E)-2-[(2-Chlorophenyl) iminomethyl]-4-trifluoromethoxyphenol. J PhysChem A 115:13865–13876

    CAS  Google Scholar 

  47. Jacob George A, Prasana JC, Muthu S, Kuruvilla TK, Sevanthi S, Saji RS (2018) Spectroscopic (FT-IR, FT Raman) and quantum mechanical study on N-(2,6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-methoxy phenoxy) propyl]piperazin-1-yl}acetamide. J Mol Struct 1171:268–278

    Article  Google Scholar 

  48. Scrocco E, Tomasi J (1978) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials. Adv Quant Chem 103:115–193

    Article  Google Scholar 

  49. Tao Y, Han L, Han Y, Liu Z (2015) A combined experimental and theoretical analysis on molecular structure and vibrational spectra of 2, 4-dihydroxybenzoic acid. Spectrochim Acta A Mol Biomol Spectrosc 137:1078–1085

    Article  CAS  PubMed  Google Scholar 

  50. Mahmood A, Ud-Din Khan S, Rehman F (2015) Assessing the quantum mechanical levelof theory for prediction of UV/visible absorptionspectra of some aminoazobenzene dyes. J Saudi Chem Soc 5(8):102–108

    Google Scholar 

  51. Rozas I, Alkorta I, Elguero J (2000) Behavior of Ylides containing N, O, and C atoms as hydrogen bond acceptors. J Am Chem Soc 122:11154–11161

    Article  CAS  Google Scholar 

  52. Parr R, Ayers P, Nalewajski R (2005) What is an atom in a molecule? J Phys Chem A 109:3957–3959

    Article  CAS  PubMed  Google Scholar 

  53. Ceylan Ü, Durgun M, Türkmen H, Yalçın ŞP, Kilic A, Özdemir N (2015) Theoretical and experimental investigation of 4-[(2-hydroxy-3- methylbenzylidene)amino]benzenesulfonamide: structural and spectroscopic properties, NBO, NLO and NPA analysis. J Mol Struct 1089:222–232

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Dr. Seda Sagdinc for the technical support.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written by a single author, who has given approval to the final version of the manuscript.

Corresponding author

Correspondence to Aslı Eşme.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eşme, A. Structural, spectral characterization, and topological study of (E)-5-(diethylamino)-2-((3,5-dinitrophenylimino)methyl)phenol. Struct Chem 34, 455–466 (2023). https://doi.org/10.1007/s11224-022-01956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01956-6

Keywords

Navigation