Skip to main content
Log in

A Close Look at the Molecular Structure, Prototropic Behavior and Supramolecular Architecture of (E)-4-Bromo-2-[(phenylimino)methyl]-5-methoxyphenol by Spectroscopic, Crystallographic, and Computational Methods

  • STRUCTURE OF ORGANIC COMPOUNDS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

In this study, the molecular structure, prototropic behavior and supramolecular architecture of a new Schiff base have been studied in depth using spectroscopic (UV-vis), crystallographic (XRD) and computational (HOMA and DFT) methods. Regarding the molecular structure and prototropy, the XRD, DFT and HOMA results show that the compound exists in phenol-imine form. The HOMA indices for the structural evaluation show that the compound has a pure aromatic structure in solid state. UV-vis spectra of the compound dissolved in four different solvents were investigated in order to determine which tautomeric form of the compound is dominant in the solution. It is found that the compound prefers only phenol-imine form in apolar solvents while both phenol-imine and keto amine forms appear in polar solvents. This is because polar solvent decrease the activation energy, and thus, it becomes possible to observe both forms in the solution. For an energetic approach, the tautomeric conversion between two forms of the compound was investigated by a PES scan process and close energy values were obtained for two tautomers. Investigation of non-covalent interactions underlines the active roles of C–H···O H-bonds and C···Br interactions in constructing the supramolecular network of the compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. Hadjoudis, M. Vitterakis, and I. Moustakali-Mavridis, Tetrahedron 43, 1345 (1987).

    Article  Google Scholar 

  2. I. Moustakali-Mavridis, E. Hadjoudis, and A. Mavridis, Acta Crystallogr., Sect. B 34, 3709 (1978).

    Article  Google Scholar 

  3. E. Hadjoudis, in Photochromism: Molecules and Systems, Ed. by H. Dürr and Bouas-Laurent (Elsevier, Amsterdam, 1990), p. 685.

  4. K. Amimoto and T. Kawato, J. Photochem. Photobiol. C 6, 207 (2005).

    Article  Google Scholar 

  5. F. Milia, E. Hadjoudis, and J. Seliger, J. Mol. Struct. 177, 191 (1988).

    Article  ADS  Google Scholar 

  6. C. A. Mc Auliffe, R. V. Parish, S. M. Abu-El-Wafa, et al., Inorg. Chim. Acta 115, 91 (1986).

    Article  Google Scholar 

  7. T. Maki and H. Hashimato, Bull. Chem. Soc. Jpn. 25, 411 (1952).

    Article  Google Scholar 

  8. S. Papie, N. Kaprivanae, Z. Grabarie, et al., Dyes Pigm. 25, 229 (1994).

    Article  Google Scholar 

  9. S. Zolezzi, E. Spodine, and A. Decinti, Polyhedron 21, 55 (2002).

    Article  Google Scholar 

  10. M. C. Singh, Pharm. Des. 5, 443 (1999).

    Google Scholar 

  11. V. Ambike, S. Adsule, F. Ahmed, et al., J. Inorg. Biochem. 101, 1517 (2007).

    Article  Google Scholar 

  12. C. P. Prabhakaran and C. C. Patel, J. Inorg. Nucl. Chem. 31, 3316 (1969).

    Article  Google Scholar 

  13. M. R. Mahmoud and M. T. El-Haty, J. Inorg. Nucl. Chem. 42, 349 (1980).

    Article  Google Scholar 

  14. Z. Cimerman, S. Miljanic, and J. Antolic, Spectrosc. Lett. 32, 181 (1999).

    Article  ADS  Google Scholar 

  15. R. D. Jones, D. A. Summervile, and F. Basolo, Chem. Rev. 79, 139 (1979).

    Article  Google Scholar 

  16. R. R. Gagne, C. I. Spiro, T. J. Smith, et al., J. Am. Chem. Soc. 103, 4073 (1981).

    Article  Google Scholar 

  17. R. Atkins, G. Brfwer, E. Kokto, et al., Inorg. Chem. 24, 128 (1985).

    Article  Google Scholar 

  18. T. W. Hambley, L. F. Lindoy, J. R. Reimers, et al., J. Chem. Soc. Dalton Trans. 5, 614 (2001).

    Article  Google Scholar 

  19. S. Chandra and L. K. Cupta, Trans. Met. Chem. 30, 630 (2005).

    Article  Google Scholar 

  20. T. M. A. Ismail, J. Coord. Chem. 58, 141(2005).

    Article  Google Scholar 

  21. R. R. Fenton, R. Gauci, P. C. Junk, et al., J. Chem. Soc. Dalton Trans. 10, 2185 (2002).

    Article  Google Scholar 

  22. M. T. H. Tarafder, N. Saravanan, and K. A. Course, Trans. Met. Chem. 26, 613 (2001).

    Article  Google Scholar 

  23. G. Pistolis, D. Gegiou, and E. Hadjoudis, J. Photochem. Photobiol. A: Chem. 93, 179 (1996).

    Article  Google Scholar 

  24. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et. al., Gaussian 03, Revision E.01 (Gaussian Inc., Wallingford CT, 2004).

  25. R. Dennington, T. Keith, and J. Millam, GaussView, Version 4.1.2. (Semichem Inc., Shawnee Mission, 2007).

    Google Scholar 

  26. P. J. Stephens, F. J. Devlin, C. F. Chabalowski, et al., J. Phys. Chem. 98, 11623 (1994).

    Article  Google Scholar 

  27. M. J. Frisch, J. A. Pople, and J. S. Binkley, J. Chem. Phys. 80, 3265 (1984).

    Article  ADS  Google Scholar 

  28. C. Peng, P. Y. Ayala, H. B. Schlegel, et al., J. Comp. Chem. 17, 49 (1996).

    Article  Google Scholar 

  29. G. M. Sheldrick, Acta Crystallogr. A 71, 3 (2015).

    Article  Google Scholar 

  30. G. M. Sheldrick, Acta Crystallogr., C 71, 3 (2015).

    Article  Google Scholar 

  31. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012).

    Article  Google Scholar 

  32. L. J. Farrugia, J. Appl. Crystallogr. 30, 565 (1997).

    Article  Google Scholar 

  33. C. F. Macrae, I. J. Bruno, J. A. Chisholm, et al., J. Appl. Crystallogr. 41, 466 (2008).

    Article  Google Scholar 

  34. A. Özek, Ç. Albayrak, M. Odabaşoğlu, et al., Acta Crystallogr. C 63, o177 (2007).

    Article  Google Scholar 

  35. B. Koşar, Ç. Albayrak, M. Odabaşoğlu, et al., Acta Crystallogr. E 61, o1097 (2005).

    Article  Google Scholar 

  36. B. Koşar, Ç. Albayrak, M. Odabaşoğlu, et al., Int. J. Quantum. Chem. 111, 3654 (2011).

    Google Scholar 

  37. S. Kevran, A. Elmalı, and Y. Elerman, Acta Crystallogr. C 52, 3256 (1996).

    Article  Google Scholar 

  38. A. Elmalı, Y. Elerman, I. Svoboda, et al., Acta Crystallogr. C 54, 974 (1998).

    Article  Google Scholar 

  39. Z. Popović, G. Pavlović, D. Matković-Čalogović D, et al., J. Mol. Struct. 615, 23 (2002).

    Article  ADS  Google Scholar 

  40. T. M. Krygowski, J. Chem. Inf. Comput. Sci. 33, 70 (1993).

    Article  Google Scholar 

  41. T. M. Krygowski, J. E. Zachara, and R. Moszynski, J. Chem. Inf. Model. 45, 1837 (2005).

    Article  Google Scholar 

  42. A. F. Wells, Three-Dimensional Nets and Polyhedra (Wiley-Interscience, New York, 1977).

    Google Scholar 

  43. K. A. Abbas, S. R. Salman, S. M. Kana’n, et al., Can. J. Appl. Spectrosc. 41, 119 (1996).

    Google Scholar 

  44. T. Dziembowska, E. Jagodzińska, Z. Rozwadowski, et al., J. Mol. Struct. 598, 229 (2001).

    Article  ADS  Google Scholar 

  45. G. Kaştaş, J. Mol. Struct. 1017, 38 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge to Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Kaştaş.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaştaş, G., Kaştaş, Ç.A. A Close Look at the Molecular Structure, Prototropic Behavior and Supramolecular Architecture of (E)-4-Bromo-2-[(phenylimino)methyl]-5-methoxyphenol by Spectroscopic, Crystallographic, and Computational Methods. Crystallogr. Rep. 65, 457–462 (2020). https://doi.org/10.1134/S1063774520030141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520030141

Navigation