Skip to main content

Advertisement

Log in

A pragmatic pharmacophore informatics strategy to discover new potent inhibitors against pim-3

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Pim-3 (proviral integration site moloney murine leukemia virus-3) is an oncogene which encodes proteins belonging to serine/threonine kinase family and PIM subfamily. It is generally over-expressed in epithelial and hematological tumors. It is known to involve in numerous cellular functions such as cell growth, differentiation, survival, tumorigenesis, and apoptosis. It also plays a crucial role in regulation of signal transduction cascades. Therefore, it emerged as a hopeful therapeutic target for cancer treatment. In the current study, indole derivatives having potent inhibitory activity against Pim-3 were taken and pharmacophore-based virtual screening was carried out. A 5-point pharmacophore hypothesis with one hydrogen bond acceptor, one hydrogen bond donor, and three aromatic rings, i.e., ADRRR, was developed with acceptable R2and Q2 values of 0.913 and 0.748, respectively. It was employed as a query and screening was conducted against Asinex and Otava lead library databases to screen out potent drug like candidates. The obtained compounds were subjected to SP, XP docking using 3D model of pim-3 which was constructed through comparative homology modelling, and finally binding free energies were calculated for top hits. The docking and binding free energy studies revealed that six hit molecules showed higher binding energy in comparison to the best active molecule. Finally, MD simulations of the top hit with the highest binding energy was carried out which indicated that the obtained hit N1 formed a stable complex with pim-3. We believe that these combined protocols will be helpful and cooperative to discover and design more potent pim-3 inhibitors in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Feldman JD, Vician L, Crispino M, Tocco G, Marcheselli VL, Bazan NG, Baudry M, Herschman HR (1998) KID-1, a protein kinase induced by depolarization in brain. J Biol Chem 273(26):16535–16543

    Article  CAS  PubMed  Google Scholar 

  2. Nawijn MC, Alendar A, Berns A (2011) For better or for worse: the role of Pim oncogenes in tumorigenesis. Nat Rev Cancer 11(1):23–34

    Article  CAS  PubMed  Google Scholar 

  3. Fujii C, Nakamoto Y, Lu P, Tsuneyama K, Popivanova BK, Kaneko S, Mukaida N (2005) Aberrant expression of serine/threonine kinase Pim-3 in hepatocellular carcinoma development and its role in the proliferation of human hepatoma cell lines. Int J Cancer 114(2):209–218

    Article  CAS  PubMed  Google Scholar 

  4. Brault L, Gasser C, Bracher F, Huber K, Knapp S, Schwaller J (2010) PIM serine/threonine kinases in pathogenesis and therapy of hematological malignancies and solid cancers. Haematologica 95:1004–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li YY, Popivanova BK, Nagai Y, Ishikura H, Fujii C, Mukaida N (2006) Pim-3, a proto-oncogene with serine/threonine kinase activity, is aberrantly expressed in human pancreatic cancer and phosphorylates bad to block bad-mediated apoptosis in human pancreatic cancer cell lines. Cancer Res 66(13):6741–6747

    Article  CAS  PubMed  Google Scholar 

  6. Popivanova BK, Li YY, Zheng H, Omura K, Fujii C, Tsuneyama K, Mukaida N (2007) Proto-oncogene, Pim-3 with serine/threonine kinase activity, is aberrantly expressed in human colon cancer cells and can prevent Bad-mediated apoptosis. Cancer Sci 98(3):321–328

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Qu X, Shao L, Hu Y, Yu X, Lan P, Guo Q, Han Q, Zhang J, Zhang C (2018) Pim-3 enhances melanoma cell migration and invasion by promoting STAT3 phosphorylation. Cancer Biol Ther 19:160–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mukaida N, Wang YY, Li YY (2011) Roles of Pim-3, a novel survival kinase, in tumorigenesis. Cancer Sci 102(8):1437–1442

    Article  CAS  PubMed  Google Scholar 

  9. Zheng HC, Tsuneyama K, Takahashi H, Miwa S, Sugiyama T, Popivanova BK, Fujii C, Nomoto K, Mukaida N, Takano Y (2008) Aberrant Pim-3 expression is involved in gastric adenoma-adenocarcinoma sequence and cancer progression. J Cancer Res Clin Oncol 134(4):481–488

    Article  CAS  PubMed  Google Scholar 

  10. Deneen B, Welford SM, Ho T, Hernandez F, Kurland I, Denny CT (2003) PIM3 proto-oncogene kinase is a common transcriptional target of divergent EWS/ETS oncoproteins. Mol Cell Biol 23(11):3897–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li YY, Wu Y, Tsuneyama K, Baba T, Mukaida N (2009) Essential contribution of Ets-1 to constitutive Pim-3 expression in human pancreatic cancer cells. Cancer Sci 100(3):396–404

    Article  CAS  PubMed  Google Scholar 

  12. Chang M, Kanwar N, Feng E, Siu A, Liu X, Ma D, Jongstra J (2010) PIM kinase inhibitors downregulate STAT3(Tyr705) phosphorylation. Mol Cancer Ther 9(9):2478–2487

    Article  CAS  PubMed  Google Scholar 

  13. Preethi B, Shanthi V, Ramanathan K (2015) Investigation of nalidixic acid resistance mechanism in salmonella enterica using molecular simulation techniques. Appl Biochem Biotechnol 177(2):528–540

    Article  CAS  PubMed  Google Scholar 

  14. Karthick V, Shanthi V, Rajasekaran R, Ramanathan K (2012) Exploring the cause of oseltamivir resistance against mutant H274Y neuraminidase by molecular simulation approach. Appl Biochem Biotechnol 167(2):237–249

    Article  CAS  PubMed  Google Scholar 

  15. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395

    Article  PubMed  PubMed Central  Google Scholar 

  16. James N, Ramanathan K (2018) Discovery of potent ALK inhibitors using pharmacophore-Informatics strategy. Cell Biochem Biophys 76(1–2):111–124

    Article  CAS  PubMed  Google Scholar 

  17. Dhanachandra Singh KH, Karthikeyan M, Kirubakaran P, Nagamani S (2011) Pharmacophore filtering and 3D-QSAR in the discovery of new JAK2 inhibitors. J Mol Graph Model 30:186–197

    Article  CAS  PubMed  Google Scholar 

  18. Dash RC, Bhosale SH, Shelke SM, Suryawanshi MR, Kanhed AM, Mahadik KR (2012) Scaffold hopping for identification of novel D(2) antagonist based on 3D pharmacophore modelling of illoperidone analogs. Mol Divers 16(2):367–375

    Article  CAS  PubMed  Google Scholar 

  19. Sudha A, Srinivasan P, Rameshthangam P (2015) Exploration of potential EGFR inhibitors: a combination of pharmacophore-based virtual screening, atom-based 3D-QSAR and molecular docking analysis. J Recept Signal Transduct Res 35(2):137–148

    Article  CAS  PubMed  Google Scholar 

  20. Gogoi D, Baruah VJ, Chaliha AK, Kakoti BB, Sarma D, Buragohain AK (2016) 3D pharmacophore-based virtual screening, docking and density functional theory approach towards the discovery of novel human epidermal growth factor receptor-2 (HER2) inhibitors. J Theor Biol 411:68–80

    Article  CAS  PubMed  Google Scholar 

  21. More KN, Jang HW, Hong VS, Lee J (2014) Pim kinase inhibitory and antiproliferative activity of a novel series of meridianin C derivatives. Bioorg Med Chem Lett 24(11):2424–2428

    Article  CAS  PubMed  Google Scholar 

  22. More KN, Hong VS, Lee A, Park J, Kim S, Lee J (2018) Discovery and evaluation of 3,5-disubstituted indole derivatives as Pim kinase inhibitors. Bioorg Med Chem Lett 28(14):2513–2517

    Article  CAS  PubMed  Google Scholar 

  23. Lee J, More KN, Yang S, Hong VS (2014) 3,5-Bis(aminopyrimidinyl) indole Derivatives: Synthesis and Evaluation of Pim Kinase Inhibitory Activities. Bull Korean Chem Soc 35(7):2123–2129

    Article  CAS  Google Scholar 

  24. Khan MF, Verma G, Akhtar W, Shaquiquzzaman M, Akhter M, Rizvi MA, Alam MM (2019) Pharmacophore modeling, 3D-QSAR, docking study and ADME prediction of acyl 1, 3, 4thiadiazole amides and sulfonamides as antitubulin agents. Arab J Chem 12(8):5000–5018

    Article  CAS  Google Scholar 

  25. Bhadoriya KS, Sharma MC, Jain SV (2015) 2, 4-Dihydropyrano [2, 3-c] pyrazole: Discovery of new lead as through pharmacophore modelling, atom-based 3D-QSAR, virtual screening and docking strategies for improved anti-HIV-1 chemotherapy. J Taibah Univ Sci 9(4):521–530

    Article  Google Scholar 

  26. Sadowski J, Rudolph C, Gasteiger J (1992) The generation of 3D models of host-guest complexes. Anal Chim Acta 265(2):233–241

    Article  CAS  Google Scholar 

  27. Dixon SL, Smondyrev AM, Knoll EH, Rao SN, Shaw DE, Friesner RA (2006) PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des 20(10–11):647–671

  28. Kirubakaran P, Muthusamy K, Singh KH, Nagamani S (2012) Ligand-based pharmacophore modeling; atom-based 3D-QSAR analysis and molecular docking studies of phosphoinositide-dependent kinase-1 inhibitors. Indian J Pharm Sci 74(2):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silakari O, Chand S, Bahia MS (2012) Structural basis of amino pyrimidine derivatives for inhibitory activity of PKC-θ: 3D-QSAR and molecular docking studies. Mol Inform 31(9):659–668

    Article  CAS  PubMed  Google Scholar 

  30. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des 17(2–4):241–253

    Article  CAS  PubMed  Google Scholar 

  31. Pan Y, Wang Y, Bryant SH (2013) Pharmacophore and 3D-QSAR characterization of 6 arylquinazolin-4-amines as Cdc2-like kinase 4 (Clk4) and dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) inhibitors. J Chem Inf Model 53(4):938–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Magrane M, UniProt consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford) 2011:bar009

  33. Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL (2008) NCBI BLAST: a better web interface. Nucleic Acids Res 36(Web Server issue):W5–W9

  34. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31(13):3497–3500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sali A, Potterton L, Yuan F, Van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23(3):318–326

    Article  CAS  PubMed  Google Scholar 

  36. Laskowski RA, Mac Arthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  37. Eisenberg D, Lüthy R, Bowie JU (1997) VERIFY3D: assessment of protein models with three-dimensional profiles. Methods Enzymol 277:396–404

    Article  CAS  PubMed  Google Scholar 

  38. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(Web Server issue):W407–W410

  39. Sali A, Kuriyan J (1999) Challenges at the frontiers of structural biology. Trends Cell Biol 9(12):M20–M24

    Article  CAS  PubMed  Google Scholar 

  40. Schrödinger LLC (2010) Glide, Version 5.6. New York, NY

  41. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

  42. Elancheran R, Saravanan K, Choudhury B, Divakar S, Kabilan S, Ramanathan M, Das B, Devi R, Kotoky J (2016) Design and development of oxobenzimidazoles as novel androgen receptor antagonists. Med Chem Res 25(4):539–552

    Article  CAS  Google Scholar 

  43. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–49

  44. http://biosig.unimelb.edu.au/pkcsm/prediction. Accessed 14 Oct 2021

  45. Lyne PD, Lamb ML, Saeh JC (2006) Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem 49(16):4805–4808

    Article  CAS  PubMed  Google Scholar 

  46. Shaw DE (2014) Desmond, Version 3.8. New York, NY

  47. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91(24):6269–6271

    Article  CAS  Google Scholar 

  48. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487

    Article  CAS  Google Scholar 

  49. Strahan GD, Keniry MA, Shafer RH (1998) NMR structure refinement and dynamics of the K+-[d(G3T4G3)]2 quadruplex via particle mesh Ewald molecular dynamics simulations. Biophys J 75(2):968–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andersen HC (1983) Rattle: A “velocity” version of the shake algorithm for molecular dynamics calculations. J Comput Physics 52(1):24–34

    Article  CAS  Google Scholar 

  51. Teli MK, Rajanikant GK (2012) Pharmacophore generation and atom-based 3D-QSAR of novel quinoline-3-carbonitrile derivatives as Tpl2 kinase inhibitors. J Enzyme Inhib Med Chem 27(4):558–570

    Article  CAS  PubMed  Google Scholar 

  52. Ugale VG, Patel HM, Surana SJ (2013) Molecular modeling studies of quinoline derivatives as VEGFR-2 tyrosine kinase inhibitors using pharmacophore based 3D QSAR and docking approach. Arab J Chem 10(2):S1980–S2003

    Google Scholar 

  53. Mahipal TOP, Karthikeyan C, Moorthy NS, Trivedi P (2010) 3D QSAR of aminophenyl benzamide derivatives as histone deacetylase inhibitors. Med Chem 6(5):277–285

    Article  CAS  PubMed  Google Scholar 

  54. Chaudhari P, Bari S (2016) In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening. Mol Divers 20(1):41–53

    Article  CAS  PubMed  Google Scholar 

  55. Kristam R, Parmar V, Viswanadhan VN (2013) 3D-QSAR analysis of TRPV1 inhibitors reveals a pharmacophore applicable to diverse scaffolds and clinical candidates. J Mol Graph Model 45:157–172

    Article  CAS  PubMed  Google Scholar 

  56. Morya VK, Dewaker V, Kim EK (2012) In silico study and validation of phosphotransacetylase (PTA) as a putative drug target for Staphylococcus aureus by homology-based modelling and virtual screening. Appl Biochem Biotechnol 168(7):1792–1805

    Article  CAS  PubMed  Google Scholar 

  57. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of non-bonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mahgoub EO, Bolad A (2013) Correctness and accuracy of template-based modeled single chain fragment variable (scFv) protein anti-breast cancer cell line (MCF-7). Open J Genet 3:183–194

    Article  CAS  Google Scholar 

  59. http://biosig.unimelb.edu.au/pkcsm/theory. Accessed 14 Oct 2021

Download references

Acknowledgements

We greatly acknowledge Tripos Inc., USA, and Schrödinger LLC, New York, for providing the software. The author Peddi Sudhir Reddy would like to acknowledge financial support from UGC for a research fellowship.

Funding

This work was supported by the Council of Scientific and Industrial Research [02(0379)/19/EMR-II].

Author information

Authors and Affiliations

Authors

Contributions

Sudhir Reddy Peddi: Conceptualization, methodology, investigation, software, visualization, data curation, validation, resources, writing-original draft. Ramalingam Kundenapally: Investigation, visualization, data curation, validation, formal analysis. Sreekanth Sivan: Writing-review and editing, validation, visualization, formal analysis. Gururaj Somadi: Investigation, visualization, formal analysis. Vijjulatha Manga: Software, supervision, funding acquisition, project administration.

Corresponding author

Correspondence to Vijjulatha Manga.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

11224_2022_1949_MOESM1_ESM.docx

Supplementary information consists of inter-pharmacophoric site distances and angle measurements of the model ADRRR (Tab S1 and Tab S2) and ligand interaction diagrams of screened hits (N2 to N6) retrieved from Asinex and Otava lead library databases (Figure S1) (DOCX 4071 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reddy Peddi, S., Kundenapally, R., Kanth Sivan, S. et al. A pragmatic pharmacophore informatics strategy to discover new potent inhibitors against pim-3. Struct Chem 33, 2003–2021 (2022). https://doi.org/10.1007/s11224-022-01949-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-01949-5

Keywords

Navigation