Skip to main content
Log in

Investigation the response of BC3NT towards 5-fluorouracil drug in the both perfect and defected sate; A DFT calculations

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were employed to study the 5-fluorouracil (5FU) drug interaction strength with perfect and defective forms of boron carbide nanotube (BC3NT). It was found that the perfect BC3NT sheet is not capable of adsorbing the 5FU molecules appropriately. The introduction of single-vacancy (SV) defects in the BC3NT lattice will dramatically improve the interaction strength between the 5FU drug and the BC3NT surface with Ead of about −21.74 kcal/mol. Furthermore, it was shown that the electrical conductivity of the perfect BC3NT is not remarkably affected by the 5FU adsorption and this negligible change of conductivity does not suffice for the adsorbent sheet to play a sensory role. Based on the conductivity values, it can be predicted that the conductivity of single-vacancy BC3NT sheet, SV-BC3NT, and 5FU complexes is enhanced 561 times compared to that of the BC3NT sheet with no defects. The value of Ead significantly increased by increasing the solvent dielectric constant and then changed smoothly when the dielectric constant was lower than 40. Similar to electric conductivity, the magnetic properties of BC3NT are remarkably enhanced after 5FU adsorption in the SV-BC3NT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Confirm

References

  1. Gamelin EC, Danquechin-Dorval EM, Dumesnil YF, Maillart PJ, Goudier M, Burtin PC, Delva RG, Lortholary AH, Gesta PH, Larra FG (1996) Relationship between 5-fluorouracil (5-FU) dose intensity and therapeutic response in patients with advanced colorectal cancer receiving infusional therapy containing 5-FU. Cancer: Interdisciplinary International Journal of the American Cancer Society 77(3):441–451

    Article  CAS  Google Scholar 

  2. Su F, Jia Q, Li Z, Wang M, He L, Peng D, Song Y, Zhang Z, Fang S (2019) Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater. 275:152–162

    Article  CAS  Google Scholar 

  3. Beyzaei H, Beygi A, Aryan R (2016) One-pot synthesis and characterization of highly functionalized thiazoles. Iran. J. Chem. Chem. Eng. 35(4):31–37

  4. Fitzpatrick RE (1999) Treatment of inflamed hypertrophic scars using intralesional 5-FU. Dermatol. Surg. 25(3):224–232

    Article  CAS  Google Scholar 

  5. Abbaspour A, Khadiv Parsi P, Khalighi-Sigaroodi F, Ghaffarzadegan R (2016) Optimization of atropine extraction process from atropa belladonna by modified bubble column extractor with ultrasonic bath. Iran. J. Chem. Chem. Eng. 35(4):49–60

  6. Jia Q, Li Z, Guo C, Huang X, Kang M, Song Y, He L, Zhou N, Wang M, Zhang Z (2020) PEGMA-modified bimetallic NiCo Prussian blue analogue doped with Tb (III) ions: efficiently pH-responsive and controlled release system for anticancer drug. Chem. Eng. J. 389:124468

    Article  CAS  Google Scholar 

  7. Feng Q, Li Y, Wang N, Hao Y, Chang J, Wang Z, Zhang X, Zhang Z, Wang L (2020) A biomimetic nanogenerator of reactive nitrogen species based on battlefield transfer strategy for enhanced immunotherapy. Small:2002138

  8. Wang M, Hu M, Li Z, He L, Song Y, Jia Q, Zhang Z, Du M (2019) Construction of Tb-MOF-on-Fe-MOF conjugate as a novel platform for ultrasensitive detection of carbohydrate antigen 125 and living cancer cells. Biosens. Bioelectron. 142:111536

    Article  Google Scholar 

  9. Manouchehri S, Boroojerdian P, Marasi A, Amoo M, Yousefi MH (2018) Synthesis of single phase tin(II) oxide nanoparticles by microwave-assisted hydrothermal technique. Iran. J. Chem. Chem. Eng. 37:1–8

  10. Agbolaghi S, Abbaspoor S, Alizadeh-Osgouei M, Nazari M, Abbasi F (2018) Nanostructured single crystals sandwiched between ordered/disordered coily and rod brushes. Iran. J. Chem. Chem. Eng. 37(6):15–25

  11. Masteri Farahani M, Taghizadeh F (2018) Molybdenum-schiff base complex immobilized on magnetite nanoparticles as a reusable epoxidation catalyst. Iran. J. Chem. Chem. Eng. 37(6):35–42

  12. Liu L, Li D, Ma Y, Shen H, Zhao S, Wang Y (2020) Combined application of arbuscular mycorrhizal fungi and exogenous melatonin alleviates drought stress and improves plant growth in tobacco seedlings. J. Plant Growth Regul.:1–14

  13. Wang L, Yang T, Wang B, Lin Q, Zhu S, Li C, Ma Y, Tang J, Xing J, Li X (2020) RALF1-FERONIA complex affects splicing dynamics to modulate stress responses and growth in plants. Sci. Adv. 6(21):eaaz1622

    Article  CAS  Google Scholar 

  14. Alaei M, Torkian S, Shams MH, Rashidi AM (2018) Simple method for the preparation of Fe3O4/MWCNT nanohybrid as radar absorbing material (RAM). Iran. J. Chem. Chem. Eng. 37(6):9–14

  15. Guo H, Qian K, Cai A, Tang J, Liu J (2019) Ordered gold nanoparticle arrays on the tip of silver wrinkled structures for single molecule detection. Sensors Actuators B Chem. 300:126846

    Article  CAS  Google Scholar 

  16. Manouchehri S, Boroojerdian P, Marasi A, Amoo M, Yousefi MH (2018) Synthesis of single phase tin(ii) oxide nanoparticles by microwave-assisted hydrothermal technique. Iran. J. Chem. Chem. Eng. 37(6):1–8

  17. Wang, S., Zhao, Y., Li, J., Lai, H., Qiu, C., Pan, N., Gong, Q.: Neurostructural correlates of hope: dispositional hope mediates the impact of the SMA gray matter volume on subjective well-being in late adolescence. Social Cognitive and Affective Neuroscience (2020)

  18. Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503

    Article  CAS  Google Scholar 

  19. Zeybek DK, Demir B, Zeybek B, Pekyardımcı Ş (2015) A sensitive electrochemical DNA biosensor for antineoplastic drug 5-fluorouracil based on glassy carbon electrode modified with poly (bromocresol purple). Talanta 144:793–800

    Article  Google Scholar 

  20. Yan H, Xue X, Chen W, Wu X, Dong J, Liu Y, Wang Z (2020) Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property. Appl. Surf. Sci. 530:147295

    Article  CAS  Google Scholar 

  21. Zhong P-F, Lin H-M, Wang L-W, Mo Z-Y, Meng X-J, Tang H-T, Pan Y-M (2020) Electrochemically enabled synthesis of sulfide imidazopyridines via a radical cyclization cascade. Green Chem. 22(19):6334–6339

    Article  CAS  Google Scholar 

  22. Wang M, Hu M, Hu B, Guo C, Song Y, Jia Q, He L, Zhang Z, Fang S (2019) Bimetallic cerium and ferric oxides nanoparticles embedded within mesoporous carbon matrix: electrochemical immunosensor for sensitive detection of carbohydrate antigen 19-9. Biosens. Bioelectron. 135:22–29

    Article  CAS  Google Scholar 

  23. Wang M, Yang L, Hu B, Liu J, He L, Jia Q, Song Y, Zhang Z (2018) Bimetallic NiFe oxide structures derived from hollow NiFe Prussian blue nanobox for label-free electrochemical biosensing adenosine triphosphate. Biosens. Bioelectron. 113:16–24

    Article  CAS  Google Scholar 

  24. Soltani A, Baei MT, Lemeski ET, Kaveh S, Balakheyli H (2015) A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes. J. Phys. Chem. Solids 86:57–64

    Article  CAS  Google Scholar 

  25. Nikmaram F, Khoddamzadeh A (2016) Carbon and BN nanocones as nano carriers for 5-fluorouracil, a DFT study. Int J Bio-Inorg Hybr Nanomater 5(4):229–234

    Google Scholar 

  26. Javan MB, Soltani A, Azmoodeh Z, Abdolahi N, Gholami N (2016) A DFT study on the interaction between 5-fluorouracil and B12N12 nanocluster. J. Phys. Chem. Solids 86:57–64

    Google Scholar 

  27. Su Q, Liu Y, Lv X-W, Dai R-X, Yang X-H, Kong B-H (2020) LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am. J. Phys. Heart Circ. Phys. 318(2):H332–H344

    CAS  Google Scholar 

  28. Guo H, Li X, Zhu Q, Zhang Z, Liu Y, Li Z, Wen H, Li Y, Tang J, Liu J (2020) Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method. Nanotechnology 31(45):455203

    Article  CAS  Google Scholar 

  29. Kouvetakis J, Sasaki T, Shen C, Hagiwara R, Lerner M, Krishnan K, Bartlett N (1989) Novel aspects of graphite intercalation by fluorine and fluorides and new B/C, C/N and B/C/N materials based on the graphite network. Synth. Met. 34(1-3):1–7

    Article  CAS  Google Scholar 

  30. Yao B, Chen W, Liu L, Ding B, Su W (1998) Amorphous B–C–N semiconductor. J. Appl. Phys. 84(3):1412–1415

    Article  CAS  Google Scholar 

  31. Liu H, Liu X, Zhao F, Liu Y, Liu L, Wang L, Geng C, Huang P (2020) Preparation of a hydrophilic and antibacterial dual function ultrafiltration membrane with quaternized graphene oxide as a modifier. J. Colloid Interface Sci. 562:182–192

    Article  CAS  Google Scholar 

  32. Yang, W., Pudasainee, D., Gupta, R., Li, W., Wang, B., Sun, L.: An overview of inorganic particulate matter emission from coal/biomass/MSW combustion: sampling and measurement, formation, distribution, inorganic composition and influencing factors. Fuel Processing Technology, 106657 (2020)

  33. Azevedo S, De Paiva R (2006) Structural stability and electronic properties of carbon-boron nitride compounds. EPL (Europhysics Letters) 75(1):126

    Article  CAS  Google Scholar 

  34. Weng-Sieh Z, Cherrey K, Chopra NG, Blase X, Miyamoto Y, Rubio A, Cohen ML, Louie SG, Zettl A, Gronsky R (1995) Synthesis of BxCyNz nanotubules. Phys. Rev. B 51(16):11229

    Article  CAS  Google Scholar 

  35. Miyamoto Y, Cohen ML, Louie SG (1997) Theoretical investigation of graphitic carbon nitride and possible tubule forms. Solid State Commun. 102(8):605–608

    Article  CAS  Google Scholar 

  36. Miyamoto Y, Rubio A, Louie SG, Cohen ML (1994) Electronic properties of tubule forms of hexagonal BC3. Phys. Rev. B 50(24):18360

    Article  CAS  Google Scholar 

  37. Cai, C., Wu, X., Liu, W., Zhu, W., Chen, H., Qiu, J.C.D., Sun, C.-N., Liu, J., Wei, Q., Shi, Y.: Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: parameter optimization, heat treatment and mechanical performance. Journal of Materials Science & Technology (2020)

  38. Carroll D, Redlich P, Blase X, Charlier J-C, Curran S, Ajayan P, Roth S, Rühle M (1998) Effects of nanodomain formation on the electronic structure of doped carbon nanotubes. Phys. Rev. Lett. 81(11):2332

    Article  CAS  Google Scholar 

  39. Fuentes G, Borowiak-Palen E, Knupfer M, Pichler T, Fink J, Wirtz L, Rubio A (2004) Formation and electronic properties of BC3 single-wall nanotubes upon boron substitution of carbon nanotubes. Phys. Rev. B 69(24):245403

    Article  Google Scholar 

  40. Cai C, Tey WS, Chen J, Zhu W, Liu X, Liu T, Zhao L, Zhou K (2020) Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 288:116882

    Article  Google Scholar 

  41. Jahangiri AR, Sedighi M, Salimi F (2019) Synthesis of zinc-sulfate nano particles and detection of their induction time, nucleation rate and interfacial tension. Iran. J. Chem. Chem. Eng. 38:45–52

  42. Taghavi Fardood S, Ebadzadeh B, Ramazani A (2019) Green Synthesis and Characterization of Ni-Cu-Mg Ferrite Nanoparticles in the Presence of Tragacanth Gum and Study of Their Catalytic Activity in the Synthesis of Hexanitrohexaazaisowurtzitane. Iran. J. Chem. Chem. Eng. 38:21–29

  43. Kim Y-H, Chang K-J, Louie S (2001) Electronic structure of radially deformed BN and BC 3 nanotubes. Phys. Rev. B 63(20):205408

    Article  Google Scholar 

  44. Jalili S, Akhavan M, Schofield J (2012) Electronic and structural properties of BC3 nanotubes with defects. J. Phys. Chem. C 116(24):13225–13230

    Article  CAS  Google Scholar 

  45. Ahmadi S, Hosseinian A, Delir Kheirollahi Nezhad P, Monfared A, Vessally E (2019) Nano-ceria (CeO2): An efficient catalyst for the multi-component synthesis of a variety of key medicinal heterocyclic compounds.Iran. J. Chem. Chem. Eng. 38:1–19

  46. Nardelli MB, Yakobson BI, Bernholc J (1998) Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57(8):R4277

    Article  Google Scholar 

  47. Javanshir Z, Razavi Mehr M, Fekri MH (2021) Experimental and computational studies on the electrochemical behavior of carvacrol and menthol, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 40:487–499

  48. Pan B, Yang W, Yang J (2000) Formation energies of topological defects in carbon nanotubes. Phys. Rev. B 62(19):12652

    Article  CAS  Google Scholar 

  49. Orellana W, Fuentealba P (2006) Structural, electronic and magnetic properties of vacancies in single-walled carbon nanotubes. Surf. Sci. 600(18):4305–4309

    Article  CAS  Google Scholar 

  50. Rossato J, Baierle R, Orellana W (2007) Stability and electronic properties of vacancies and antisites in BC2N nanotubes. Phys. Rev. B 75(23):235401

    Article  Google Scholar 

  51. Parsafar N, Ghafouri V, Banaei A (2019) Electrochemical sensing of H2S gas in air by carboxylated multi-walled carbon nanotubes. Iran. J. Chem. Chem. Eng. 38:53–62

  52. Li Y, Zhou Z, Golberg D, Bando Y, Schleyer PR, Chen Z (2008) Stone–Wales defects in single-walled boron nitride nanotubes: formation energies, electronic structures, and reactivity. J. Phys. Chem. C 112(5):1365–1370

    Article  CAS  Google Scholar 

  53. Piquini P, Baierle RJ, Schmidt T, Fazzio A (2005) Formation energy of native defects in BN nanotubes: an ab initio study. Nanotechnology 16(6):827

    Article  CAS  Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery Jr JA (1993) General atomic and molecular electronic structure system. J. Comput. Chem. 14(11):1347–1363. https://doi.org/10.1002/jcc.540141112

    Article  CAS  Google Scholar 

  55. Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem. Phys. Lett. 256(4-5):391–399

    Article  CAS  Google Scholar 

  56. Schleyer PR, Maerker C, Dransfeld A, Jiao H, van Eikema Hommes NJ (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe. J. Am. Chem. Soc. 118(26):6317–6318

    Article  CAS  Google Scholar 

  57. Lee Y, Kwon D-G, Kim G, Kwon Y-K (2017) Ab initio study of aspirin adsorption on single-walled carbon and carbon nitride nanotubes. Phys. Chem. Chem. Phys. 19(11):8076–8081

    Article  CAS  Google Scholar 

  58. Djawad F, Djamel N, Elhadj M, Samira A (2019) Adsorption of Ni2+ Ions onto NaX and NaY Zeolites: Equilibrium, Kinetics, Intra Crystalline Diffusion, and Thermodynamic Studies. Iran. J. Chem. Chem. Eng. 38:63–81

  59. Dehghan Abkenar S, Ganjali MR, Hossieni M, Sadeghpour Karimi M (2019) Application of Copper Vanadate Nanoparticles for Removal of Methylene Blue from Aqueous Solution: Kinetics, Equilibrium, and Thermodynamic Studies. Iran. J. Chem. Chem. Eng. 38:83–92

  60. Ibeji CU, Oguejiofo U, Chukwuma Chime C, Akpomie KG, Anarado CJO, Odewole OA, Grishina M, Potemkin V (2021) Dehydroacetic acid-phenylhydrazone as a potential inhibitor for wild-type HIV-1 protease: Structural, DFT, Molecular Dynamics, 3D QSAR and ADMET Characteristics, Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 40:215–230

  61. Bahrami Adeh N, Mohammadi N, Khorramjah F (2016) Synthesis and characterization of a novel nanoporous composite based on elemental sulfur and graphitic mesoporous carbon. Iran. J. Chem. Chem. Eng. 35(4):1–9

  62. Dolak İ (2019) Ion imprinted affinity cryogels for the selective adsorption uranium in real samples. Iran. J. Chem. Chem. Eng. 38:115–125

  63.  Li D, Zhong G-Q, Zang Q (2016) Solid–solid synthesis, crystal structure and thermal decomposition of copper(II) complex of 2-Picolinic acid. Iran. J. Chem. Chem. Eng. 35(4):21–29

  64. Amiri A, Ramazani A, Jahanshahi M, Moghadamnia AA (2016) Synthesis and evaluating of nanoporous molecularly imprinted polymers for extraction of quercetin as a bioactive component of medicinal plants. Iran. J. Chem. Chem. Eng. 35(4):11–19

  65. Sabonian M, Mahanpoor K (2019) Optimization of photocatalytic reduction of Cr(VI) in water with Nano ZnO/Todorokite as a Catalyst: Using taguchi experimental design. Iran. J. Chem. Chem. Eng. 38:105–113

Download references

Author information

Authors and Affiliations

Authors

Contributions

Yu Yang, Zhao Guangrong, Wang Xiaojing, and Liang Wu have equally contributed in the investigation, methodology, validation, and writing—review and editing

Ethics declarations

Ethical approval

Not required

Consent to participate

Confirm

Consent for publication

Confirm

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Guangrong, Z., Xiaojing, W. et al. Investigation the response of BC3NT towards 5-fluorouracil drug in the both perfect and defected sate; A DFT calculations. Struct Chem 32, 2099–2106 (2021). https://doi.org/10.1007/s11224-021-01779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01779-x

Keywords

Navigation