Skip to main content
Log in

Studies on hydrogen bonding of adrenaline/acetone and adrenaline/methanol complexes: computational and experimental approach

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this investigation, we elucidate the potential interaction of volatile organic solvents such as acetone and ethanol with adrenaline hormone through hydrogen bonding. There are four potential complexes between adrenaline and acetone and six potential complexes between adrenaline and methanol, which were investigated from several perspectives such as energy, vibrational frequency, and natural bond orbital theory, quantum theory of atoms in molecules, nuclear magnetic resonance, reduced density gradient, and geometrical parameters, utilizing ωB97XD/6-311G++(d,p) level. Finally, the potential interaction was examined experimentally through FTIR which showed a remarkable redshift. The intramolecular H-bond was broken in the first complex forming a newly developed one, leading to structural deformation which in turn led to the destabilization of the developed complex, whereas that intramolecular H-bond was retained in the other three complexes of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability

Available.

References

  1. Trumper M (1930) Bodily changes in pain, hunger, fear and rage: an account of recent researches into the function of emotional excitement. Psychol Clin 19:100–101 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5138305/

    PubMed Central  Google Scholar 

  2. Multum C Epinephrine. Available online: https://www.drugs.com/mtm/epinephrine-injection.html (accessed on 22-03).

  3. Song Y (2007) Theoretical study on the electrochemical behavior of norepinephrine at Nafion multi-walled carbon nanotubes modified pyrolytic graphite electrode. Spectrochim Acta A Mol Biomol Spectrosc 67:1169–1177. https://doi.org/10.1016/j.saa.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  4. Baron R, Zayats M, Willner I (2005) Dopamine-, l-DOPA-, adrenaline-, and noradrenaline-induced growth of Au nanoparticles: assays for the detection of neurotransmitters and of tyrosinase activity. Anal Chem 77:1566–1571. https://doi.org/10.1021/ac048691v

    Article  CAS  PubMed  Google Scholar 

  5. Chen S-M, Peng K-T (2003) The electrochemical properties of dopamine, epinephrine, norepinephrine, and their electrocatalytic reactions on cobalt(II) hexacyanoferrate films. J Electroanal Chem 547:179–189. https://doi.org/10.1016/S0022-0728(03)00220-1

    Article  CAS  Google Scholar 

  6. Perati PR, Cheng J, Jandik P, Hanko VP (2010) Disposable carbon electrodes for liquid chromatographic detection of catecholamines in blood plasma samples. Electroanalysis 22:325–332. https://doi.org/10.1002/elan.200900334

    Article  CAS  Google Scholar 

  7. Chen W, Lin X, Luo H, Huang L (2005) Electrocatalytic oxidation and determination of norepinephrine at poly(cresol red) modified glassy carbon electrode. Electroanalysis 17:941–945. https://doi.org/10.1002/elan.200403199

    Article  CAS  Google Scholar 

  8. Dong H, Wang S, Liu A, Galligan JJ, Swain GM (2009) Drug effects on the electrochemical detection of norepinephrine with carbon fiber and diamond microelectrodes. J Electroanal Chem 632:20–29. https://doi.org/10.1016/j.jelechem.2009.03.022

    Article  CAS  Google Scholar 

  9. Łuczak T (2009) Electroanalysis of norepinephrine at bare gold electrode pure and modified with gold nanoparticles and S-functionalized self-assembled layers in aqueous solution. Electroanalysis 21:1539–1549. https://doi.org/10.1002/elan.200904579

    Article  CAS  Google Scholar 

  10. Seol H, Jeong H, Jeon S (2008) A selective determination of norepinephrine on the glassy carbon electrode modified with poly(ethylenedioxypyrrole dicarboxylic acid) nanofibers. J Solid State Electrochem 13:1881. https://doi.org/10.1007/s10008-008-0766-1

    Article  CAS  Google Scholar 

  11. Yao H, Li S, Tang Y, Chen Y, Chen Y, Lin X (2009) Selective oxidation of serotonin and norepinephrine over eriochrome cyanine R film modified glassy carbon electrode. Electrochim Acta 54:4607–4612. https://doi.org/10.1016/j.electacta.2009.02.108

    Article  CAS  Google Scholar 

  12. Alonso JL, Sanz ME, López JC, Cortijo V (2009) Conformational behavior of norephedrine, ephedrine, and pseudoephedrine. J Am Chem Soc 131:4320–4326. https://doi.org/10.1021/ja807674q

    Article  CAS  PubMed  Google Scholar 

  13. ÇarÇabal P, Snoek LC, Van Mourik T (2005) A computational and spectroscopic study of the gas-phase conformers of adrenaline. Mol Phys 103:1633–1639. https://doi.org/10.1080/00268970500086039

    Article  CAS  Google Scholar 

  14. Butz P, Kroemer RT, Macleod NA, Simons JP (2001) Conformational preferences of neurotransmitters: ephedrine and its diastereoisomer, pseudoephedrine. J Phys Chem A 105:544–551. https://doi.org/10.1021/jp002862s

    Article  CAS  Google Scholar 

  15. Arunan E, Desiraju GR, Klein RA, Sadlej J, Scheiner S, Alkorta I, Clary DC, Crabtree RH, Dannenberg JJ, Hobza P et al (2011) Definition of the hydrogen bond (IUPAC Recommendations 2011). Pure Appl Chem 83:1637–1641. https://doi.org/10.1351/PAC-REC-10-01-02

    Article  CAS  Google Scholar 

  16. Inventory NP Methanol. Available online: http://www.npi.gov.au/resource/methanol (accessed on 22-03)

  17. eur-lex. Document 32008 R 1272. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008R1272 (accessed on 22-03)

  18. Darling D Update: U.S. EPA Exempt Volatile Organic Compounds. Available online: https://www.paint.org/voc-exempt/ (accessed on 22-03)

  19. Wang H, Huang Z, Shen T, Guo L (2012) Hydrogen-bonding interactions in adrenaline–water complexes: DFT and QTAIM studies of structures, properties, and topologies. J Mol Model 18:3113–3123. https://doi.org/10.1007/s00894-011-1325-8

    Article  CAS  PubMed  Google Scholar 

  20. Yu Z-Y, Liu T, Guo D-J, Liu Y-J, Liu C-B (2010) Experimental and theoretical evaluation on the microenvironmental effect of dimethyl sulfoxide on adrenaline in acid aqueous solution. J Mol Struct 984:402–408. https://doi.org/10.1016/j.molstruc.2010.10.015

    Article  CAS  Google Scholar 

  21. Mohamed A, Fahim AM, Ibrahim MA (2020) Theoretical investigation on hydrogen bond interaction between adrenaline and hydrogen sulfide. J Mol Model 26(12):354. https://doi.org/10.1007/s00894-020-04602-2

    Article  CAS  PubMed  Google Scholar 

  22. Bayoumy AM, Elhaes H, Osman O, Hussein T, Ibrahim MA (2020) Mapping molecular electrostatic potential for heme interacting with nano metal oxides. Biointerface Res Appl Chem 10. https://doi.org/10.33263/BRIAC0102.091095

  23. Bayoumy AM, Elhaes H, Osman O, Kholmurodov KT, Hussein T, Ibrahim MA (2020) Effect of nano metal oxides on heme molecule: molecular and biomolecular approaches. Biointerface Res Appl Chem 10. https://doi.org/10.33263/BRIAC101.837845

  24. Ali GW, Abdel-Fattah WI, Elhaes H, Ibrahim MA (2019) Spectroscopic and modeling analyses of bimolecular structure of corn silk. Biointerface Res Appl Chem 9:4581–4585. https://doi.org/10.33263/BRIAC96.581585

    Article  CAS  Google Scholar 

  25. Ezzat HA, Hegazy MA, Nada NA, Ibrahim MA (2019) Effect of nano metal oxides on the electronic properties of cellulose, chitosan and sodium alginate. Biointerface Res Appl Chem 8:4143–4149. https://doi.org/10.33263/BRIAC94.143149

    Article  Google Scholar 

  26. Ibrahim A, Elhaes H, Meng F, Ibrahim M (2019) Effect of hydration on the physical properties of glucose. Biointerface Res Appl Chem 8:4114–4118. https://doi.org/10.33263/BRIAC94.114118

    Article  Google Scholar 

  27. Galal AMF, Atta D, Abouelsayed A, Ibrahim MA, Hanna AG (2019) Configuration and molecular structure of 5-chloro-N-(4-sulfamoylbenzyl) salicylamide derivatives. Spectrochim Acta A Mol Biomol Spectrosc 214:476–486. https://doi.org/10.1016/j.saa.2019.02.070

    Article  CAS  PubMed  Google Scholar 

  28. Song P, Wang H (2020) High-performance polymeric materials through hydrogen-bond cross-linking. Adv Mater 32:1901244. https://doi.org/10.1002/adma.201901244

    Article  CAS  Google Scholar 

  29. Xia Q, Liu Y, Meng J, Cheng W, Chen W, Liu S, Liu Y, Li J, Yu H (2018) Multiple hydrogen bond coordination in three-constituent deep eutectic solvents enhances lignin fractionation from biomass. Green Chem 20:2711–2721. https://doi.org/10.1039/C8GC00900G

    Article  CAS  Google Scholar 

  30. Chapovetsky A, Welborn M, Luna JM, Haiges R, Miller TF, Marinescu SC (2018) Pendant hydrogen-bond donors in cobalt catalysts independently enhance CO2 reduction. ACS Central Sci 4:397–404. https://doi.org/10.1021/acscentsci.7b00607

    Article  CAS  Google Scholar 

  31. Roztocki K, Lupa M, Sławek A, Makowski W, Senkovska I, Kaskel S, Matoga D (2018) Water-stable metal–organic framework with three hydrogen-bond acceptors: versatile theoretical and experimental insights into adsorption ability and thermo-hydrolytic stability. Inorg Chem 57:3287–3296. https://doi.org/10.1021/acs.inorgchem.8b00078

    Article  CAS  PubMed  Google Scholar 

  32. Kannan PP, Karthick NK, Arivazhagan G (2020) Hydrogen bond interactions in the binary solutions of formamide with methanol: FTIR spectroscopic and theoretical studies. Spectrochim Acta A Mol Biomol Spectrosc 229:117892. https://doi.org/10.1016/j.saa.2019.117892

    Article  CAS  PubMed  Google Scholar 

  33. Tang H, Zhao Y, Shan S, Yang X, Liu D, Cui F, Xing B (2018) Theoretical insight into the adsorption of aromatic compounds on graphene oxide. Environ Sci Nano 5:2357–2367. https://doi.org/10.1039/C8EN00384J

    Article  CAS  Google Scholar 

  34. Yang W, Mortier WJ (1986) The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc 108:5708–5711. https://doi.org/10.1021/ja00279a008

    Article  CAS  PubMed  Google Scholar 

  35. Morell C, Grand A, Toro-Labbé A (2005) New dual descriptor for chemical reactivity. J Phys Chem A 109:205–212. https://doi.org/10.1021/jp046577a

    Article  CAS  PubMed  Google Scholar 

  36. Martínez-Araya JI (2015) Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions? J Math Chem 53:451–465. https://doi.org/10.1007/s10910-014-0437-7

    Article  CAS  Google Scholar 

  37. Frisch MJ GAUSSIAN09. http://www.gaussian.com/, https://ci.nii.ac.jp/naid/10030878110/en/

  38. Chai J-D, Head-Gordon M (2008) Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys Chem Chem Phys 10:6615–6620. https://doi.org/10.1039/B810189B

    Article  CAS  PubMed  Google Scholar 

  39. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  40. McLean AD (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  41. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer. J Comput Chem 33:580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  Google Scholar 

  42. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38, 27-38. https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  43. Popelier PLA (1873-1878) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 1998:102. https://doi.org/10.1021/jp9805048

    Article  Google Scholar 

  44. van der Bondi A (1964) Waals volumes and radii. J Phys Chem 68:441–451. https://doi.org/10.1021/j100785a001

    Article  CAS  Google Scholar 

  45. Sitnitsky AE (2020) Calculation of IR absorption intensities for hydrogen bond from exactly solvable Schrödinger equation. J Mol Spectrosc 372:111347. https://doi.org/10.1016/j.jms.2020.111347

    Article  CAS  Google Scholar 

  46. Katada M, Fujii A (2018) Infrared spectroscopy of protonated phenol–water clusters. J Phys Chem A 122:5822–5831. https://doi.org/10.1021/acs.jpca.8b04446

    Article  CAS  PubMed  Google Scholar 

  47. Schuck G, Többens DM, Koch-Müller M, Efthimiopoulos I, Schorr S (2018) Infrared spectroscopic study of vibrational modes across the orthorhombic–tetragonal phase transition in methylammonium lead halide single crystals. J Phys Chem C 122:5227–5237. https://doi.org/10.1021/acs.jpcc.7b11499

    Article  CAS  Google Scholar 

  48. Bader RFW (1985) Atoms in molecules. Acc Chem Res 18:9–15. https://doi.org/10.1021/ar00109a003

    Article  CAS  Google Scholar 

  49. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928. https://doi.org/10.1021/cr00005a013

    Article  CAS  Google Scholar 

  50. Carroll MT, Bader RFW (1988) An analysis of the hydrogen bond in BASE-HF complexes using the theory of atoms in molecules. Mol Phys 65:695–722. https://doi.org/10.1080/00268978800101351

    Article  CAS  Google Scholar 

  51. Carroll MT, Chang C, Bader RFW (1988) Prediction of the structures of hydrogen-bonded complexes using the laplacian of the charge density. Mol Phys 63:387–405. https://doi.org/10.1080/00268978800100281

    Article  CAS  Google Scholar 

  52. Bader RFW, Chang C (1989) Properties of atoms in molecules: electrophilic aromatic substitution. J Phys Chem 93:2946–2956. https://doi.org/10.1021/j100345a020

    Article  CAS  Google Scholar 

  53. Popelier PLA, Bader RFW (1992) The existence of an intramolecular C-H-O hydrogen bond in creatine and carbamoyl sarcosine. Chem Phys Lett 189:542–548. https://doi.org/10.1016/0009-2614(92)85247-8

    Article  CAS  Google Scholar 

  54. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99:9747–9754. https://doi.org/10.1021/j100024a016

    Article  CAS  Google Scholar 

  55. Wick CR, Clark T (2018) On bond-critical points in QTAIM and weak interactions. J Mol Model 24:142. https://doi.org/10.1007/s00894-018-3684-x

    Article  PubMed  Google Scholar 

  56. Lomas JS (2018) Intramolecular O―H⋯O and C―H⋯O hydrogen bond cooperativity in D-glucopyranose and D-galactopyranose—A DFT/GIAO, QTAIM/IQA, and NCI approach. Magn Reson Chem 56:748–766. https://doi.org/10.1002/mrc.4728

    Article  CAS  PubMed  Google Scholar 

  57. Dhanishta P, Mishra SK, Suryaprakash N (2018) Intramolecular HB interactions evidenced in dibenzoyl oxalamide derivatives: NMR, QTAIM, and NCI Studies. J Phys Chem A 122:199–208. https://doi.org/10.1021/acs.jpca.7b10598

    Article  CAS  PubMed  Google Scholar 

  58. Fouad C, Abdelmalek Khorief N, Abdelhafid D (2020) A combined topological ELF, NCI and QTAIM study of mechanism and hydrogen bond controlling the selectivity of the IMDC reaction of nitrone-alkene obtained from m-allyloxybenzaldehyde. Lett Org Chem 17:260–267. https://doi.org/10.2174/1570178616666190401202143

    Article  CAS  Google Scholar 

  59. Reed AE, Weinhold F (1986) Natural bond orbital analysis of molecular interactions: theoretical studies of binary complexes of HF, H2O, NH3, N2, O2, F2, CO, and CO2 with HF, H2O, and NH3. J Chem Phys 84:5687–5705. https://doi.org/10.1063/1.449928

    Article  CAS  Google Scholar 

  60. Zarie-Moghaddam E, Zahedi-Tabrizi M (2019) QTAIM, NBO, and NMR studies of hydrogen bonds in capecitabine. Monatshefte für Chemie - Chem Mon 150:1267–1274. https://doi.org/10.1007/s00706-019-02413-7

    Article  CAS  Google Scholar 

  61. Sahoo DK, Jena S, Dutta J, Rana A, Biswal HS (2019) Nature and strength of M–H···S and M–H···Se (M = Mn, Fe, & Co) hydrogen bond. J Phys Chem A 123:2227–2236. https://doi.org/10.1021/acs.jpca.8b12003

    Article  CAS  PubMed  Google Scholar 

  62. Szell PMJ, Cavallo G, Terraneo G, Metrangolo P, Gabidullin B, Bryce DL (2018) Comparing the halogen bond to the hydrogen bond by solid-state NMR spectroscopy: anion coordinated dimers from 2- and 3-iodoethynylpyridine salts. Chem Eur J 24:11364–11376. https://doi.org/10.1002/chem.201801279

    Article  CAS  PubMed  Google Scholar 

  63. Scheiner S (2016) Interpretation of spectroscopic markers of hydrogen bonds. ChemPhysChem 17:2263–2271. https://doi.org/10.1002/cphc.201600326

    Article  CAS  PubMed  Google Scholar 

  64. Scheiner S (2016) Assessment of the presence and strength of H-bonds by means of corrected NMR. Molecules (Basel, Switzerland) 21:1426. https://doi.org/10.3390/molecules21111426

    Article  CAS  Google Scholar 

  65. Johnson ER, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen AJ, Yang W (2010) Revealing noncovalent interactions. J Am Chem Soc 132:6498–6506. https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Code availability

Available.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Amr Mohamed: Made theoretical calculation and wrote the manuscript.

Dr. Asmaa M Fahim: Revised the manuscript and elucidated all the manuscript.

Dr. Samah Abd Elhamead Ibrahim: Made theoretical results and made discussion.

Prof Dr Medhat A. Ibrahim: Made the idea of these studies and the principal author of this work and revised the manuscript and focus of results (supervision of this work).

Corresponding author

Correspondence to Asmaa M. Fahim.

Ethics declarations

Ethics approval

All authors approved.

Consent to participate

All authors participated.

Consent for publication

All authors approved.

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, A., Fahim, A.M., Ibrahim, S.A.E. et al. Studies on hydrogen bonding of adrenaline/acetone and adrenaline/methanol complexes: computational and experimental approach. Struct Chem 32, 2115–2138 (2021). https://doi.org/10.1007/s11224-021-01773-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01773-3

Keywords

Navigation