Skip to main content
Log in

Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

A detailed study of the tautomeric properties, the conformations, and the mechanism behind the anti-cancer properties of 5-{[2-(4-methoxyphenyl)-1H-benzimidazol-1-yl]methyl}-4-ethyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (1), 2-(4-chlorophenyl) (2), 2-phenyl (3), 2-(3,4-dibenzyloxyphenyl) (4), and 2-(4-methoxyphenyl); 4-[2-(piperidin-1-yl)ethyl] (5) has been conducted using density functional theory and molecular docking. The most stable states of all the structures are shown to be in the thione form. The scans of the compounds point out two conformers at PES, one of two conformers for molecule 1 corresponds to X-ray geometry, being the lowest energy state. Current molecules (1, 2, 3, and 5) have one inter-molecular hydrogen bond between NH atom of triazole ring and =O atom in residue ARG817 of the EGFR binding pocket, while compound 4 has different type inter-molecular hydrogen bond which is between N atom in benzimidazole ring and H atom of NH3 in residue LYS721. Off all hydrogen bonds, that of 5 is the strongest one with 2.26 Å. Compound 4 has shown the best binding affinity with −10.0 kcal/mol. This compound is the most active compound regarding to the potential anti-cancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The supplementary materials have been attached.

Code availability

Gaussian 09 Revision C.01., GaussView5.0.

References

  1. Normanno N, De Luca A, Bianco C, Strizzi L, Mancino M, Maiello MR, Carotenuto A, De Feo G, Caponigro F, Salomon DS (2006) Epidermal growth factor receptor (EGFR) signaling in cancer. Gene 366:2–16. https://doi.org/10.1016/j.gene.2005.10.018

    Article  CAS  PubMed  Google Scholar 

  2. Bianco R, Gelardi T, Damiano V, Ciardiello F, Tortora G (2007) Rational bases for the development of EGFR inhibitors for cancer treatment. Int J Biochem Cell Biol 39:1416–1431. https://doi.org/10.1016/j.biocel.2007.05.008

    Article  CAS  PubMed  Google Scholar 

  3. Liao QH, Gao QZ, Wei J, Chou KC (2011) Docking and molecular dynamics study on the inhibitory activity of novel inhibitors on epidermal growth factor receptor (EGFR). Med Chem 7:24–31. https://doi.org/10.2174/157340611794072698

    Article  CAS  PubMed  Google Scholar 

  4. Hu Z, Ou L, Li S, Yang L (2014) Synthesis and biological evaluation of 1-cyano-2-amino-benzimidazole derivatives as a novel class of antitumor agents. Med Chem Res 23:3029–3038. https://doi.org/10.1007/s00044-013-0888-6

    Article  CAS  Google Scholar 

  5. Yang YH, Cheng MS, Wang QH, Nie H, Liao N, Wang J, Chen H (2009) Design, synthesis, and anti-tumor evaluation of novel symmetrical bis-benzimidazoles. Eur J Med Chem 44:1808–1812. https://doi.org/10.1016/j.ejmech.2008.07.021

    Article  CAS  PubMed  Google Scholar 

  6. Akhtar MJ, Siddiqui AA, Khan AA, Ali Z, Dewangan RP, Pasha S, Yar MS (2017) Design, synthesis, docking and QSAR study of substituted benzimidazole linked oxadiazole as cytotoxic agents, EGFR and erbB2 receptor inhibitors. Eur J Med Chem 126:853–869. https://doi.org/10.1016/j.ejmech.2016.12.014

    Article  CAS  PubMed  Google Scholar 

  7. Cheong JE, Zaffagni M, Chung I, Xu Y, Wang Y, Jernigan FE, Zetter BR, Sun L (2018) Synthesis and anticancer activity of novel water soluble benzimidazole carbamates. Eur J Med Chem 144:372–385. https://doi.org/10.1016/j.ejmech.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  8. Celik İ, Ayhan-Kılcıgil G, Guven B, Kara Z, Gurkan-Alp AS, Karayel A, Onay-Besikci A (2019) Design, synthesis and docking studies of benzimidazole derivatives as potential EGFR inhibitors. Eur J Med Chem 173:240–249. https://doi.org/10.1016/j.ejmech.2019.04.012

    Article  CAS  PubMed  Google Scholar 

  9. Li Y, Tan C, Gao C, Zhang C, Luan X, Chen X, Liu H, Chen Y, Jiang Y (2011) Discovery of benzimidazole derivatives as novel multi-target EGFR, VEGFR-2 and PDGFR kinase inhibitors. Bioorg Med Chem 19:4529–4535. https://doi.org/10.1016/j.bmc.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  10. Kuş C, Ayhan-Kılcıgil G, Özbey S, Kaynak FB, Kaya M, Çoban T, Can-Eke B (2008) Synthesis and antioxidant properties of novel N-methyl-1,3,4-thiadiazol-2-amine and 4-methyl-2H-1,2,4-triazole-3(4H)-thione derivatives of benzimidazole class. Bioorg Med Chem 16:4294–4303. https://doi.org/10.1016/j.bmc.2008.02.077

    Article  CAS  PubMed  Google Scholar 

  11. Ayhan-Kilcigil G, Kus C, Çoban T, Can-Eke B, Iscan M (2004) Synthesis and antioxidant properties of novel benzimidazole derivatives. J Enzyme Inhib Med Chem 19:129–135. https://doi.org/10.1080/1475636042000202017

    Article  CAS  PubMed  Google Scholar 

  12. Göker H, Kuş C, Boykin DW, Yildiz S, Altanlar N (2002) Synthesis of some new 2-substituted-phenyl-1H-benzimidazole-5-carbonitriles and their potent activity against candida species. Bioorg Med Chem 10:2589–2596. https://doi.org/10.1016/S0968-0896(02)00103-7

    Article  PubMed  Google Scholar 

  13. Kerimov I, Ayhan-Kilcigil G, Can-Eke B, Altanlar N, İscan M (2007) Synthesis, antifungal and antioxidant screening of some novel benzimidazole derivatives. J Enzyme Inhib Med Chem 22:696–701. https://doi.org/10.1080/14756360701228558

    Article  CAS  PubMed  Google Scholar 

  14. Sharma D, Narasimhan B, Kumar P, Judge V, Narang R, De Clercq E, Balzarini J (2009) Synthesis, antimicrobial and antiviral activity of substituted benzimidazoles. J Enzyme Inhib Med Chem 24:1161–1168. https://doi.org/10.1080/14756360802694427

    Article  CAS  PubMed  Google Scholar 

  15. Islam I, Skibo EB, Dorr RT, Alberts DS (1991) Structure-activity studies of antitumor agents based on pyrrolo[1,2-a]benzimidazoles: new reductive alkylating DNA cleaving agents. J Med Chem 34:2954–2961. https://doi.org/10.1021/jm00114a003

    Article  CAS  PubMed  Google Scholar 

  16. Roy D, Todd K, John M (2009) GaussView. Version 5. Semichem Inc. Shawnee Mission, KS.

  17. Frisch MJ, Trucks WG, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, and Fox DJ (2010) Gaussian 09. Revision C.01. Gaussian, Inc., Wallingford CT.

  18. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  19. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  20. Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211. https://doi.org/10.1139/p80-159

    Article  CAS  Google Scholar 

  21. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871. https://doi.org/10.1103/PhysRev.136.B864

    Article  Google Scholar 

  22. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  23. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. https://doi.org/10.1146/annurev.pc.46.100195.003413

    Article  CAS  PubMed  Google Scholar 

  24. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980. https://doi.org/10.1021/jp960669l

    Article  CAS  Google Scholar 

  25. Karayel A, Özbey S (2008) Experimental and theoretical structural studies on 4-(2-phenylethyl)-5-(2-furyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione. Struct Chem 19:391–397. https://doi.org/10.1007/s11224-008-9293-z

    Article  CAS  Google Scholar 

  26. Özdemir N, Türkpençe D (2013) Theoretical investigation of thione-thiol tautomerism, intermolecular double proton transfer reaction and hydrogen bonding interactions in 4-ethyl-5-(2-hydroxyphenyl)-2H-1,2,4-triazole-3(4H)-thione. Comp Theo Chem 1025:35–45. https://doi.org/10.1016/j.comptc.2013.10.001

    Article  CAS  Google Scholar 

  27. Deng L, Ziegler T, Fan L (1993) A combined density functional and intrinsic reaction coordinate study on the ground state energy surface of H2CO. J Chem Phys 99:3823–3835. https://doi.org/10.1063/1.466129

    Article  CAS  Google Scholar 

  28. Deng L, Ziegler T (1994) The determination of intrinsic reaction coordinates by density functional theory. Int J Quantum Chem 52:731–765. https://doi.org/10.1002/qua.560520406

    Article  CAS  Google Scholar 

  29. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  Google Scholar 

  30. Mennucci B, Tomasi J (1997) Continuum solvation models: a new approach to the problem of solute’s charge distribution and cavity boundaries. J Chem Phys 106:5151–5158. https://doi.org/10.1063/1.473558

    Article  CAS  Google Scholar 

  31. Mennucci B, Cancès E, Tomasi J (1997) Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J Phys Chem B 101:10506–10517. https://doi.org/10.1021/jp971959k

    Article  CAS  Google Scholar 

  32. Tomasi J, Mennucci B, Cancès E (1999) The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level. J Mol Struct THEOCHEM 464:211–226. https://doi.org/10.1016/S0166-1280(98)00553-3

    Article  CAS  Google Scholar 

  33. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2-1.2 program. A complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  34. Chaudhary MK, Srivastava A, Singh KK, Tandon P, Joshi BD (2020) Computational evaluation on molecular stability, reactivity, and drug potential of frovatriptan from DFT and molecular docking approach. Comput Theor Chem 1191:113031. https://doi.org/10.1016/j.comptc.2020.113031

    Article  CAS  Google Scholar 

  35. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) Elemental carbon cages. J Am Chem Soc 110:1113–1127. https://doi.org/10.1021/ja00212a020

    Article  CAS  Google Scholar 

  36. Bethune DS, Meijer G, Tang WC, Rosen HJ (1990) The vibrational Raman spectra of purified solid films of C60 and C70. Chem Phys Lett 174:219–222. https://doi.org/10.1016/0009-2614(90)85335-A

    Article  CAS  Google Scholar 

  37. Radhakrishnan S, Parthasarathi R, Subramanian V, Somanathan N (2006) Structure and properties of polythiophene containing hetero aromatic side chains. Comput Mater Sci 37:318–322. https://doi.org/10.1016/j.commatsci.2005.08.009

    Article  CAS  Google Scholar 

  38. Liu X, Schmalz TG, Klein DJ (1992) Favorable structures for higher fullerenes. Chem Phys Lett 188:550–554. https://doi.org/10.1016/0009-2614(92)80864-8

    Article  CAS  Google Scholar 

  39. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  40. Gazquez JL (2008) Perspectives on the density functional theory of chemical reactivity. J Mex Chem Soc 52:3–10

    CAS  Google Scholar 

  41. Sethi A, Joshi K, Sasikala K, Alvala M (2020) Molecular docking in modern drug discovery: principles and recent applications. Drug discovery and development - new advances. IntechOpen. https://doi.org/10.5772/intechopen.85991

  42. Trott O, Olson AJ (2009) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. https://doi.org/10.1002/jcc.21334

  43. Sanner MF (1999) Python: a programming language for software integration and development. J Mol Graph Model 17:57–61

    CAS  PubMed  Google Scholar 

  44. Chang YM, Chen CKM, Ko TP, Chang-Chien MW, Wang AHJ (2013) Structural analysis of the antibiotic-recognition mechanism of MarR proteins. Acta Crystallogr D Biol Crystallogr 69:1138–1149. https://doi.org/10.1107/S0907444913007117

    Article  CAS  PubMed  Google Scholar 

  45. Stamos J, Sliwkowski MX, Eigenbrot C (2002) Structure of the epidermal growth factor receptor kinase domain alone and in complex with a 4-anilinoquinazoline inhibitor. J Biol Chem 277:46265–46272. https://doi.org/10.1074/jbc.M207135200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author acknowledges Hitit University-Scientific Research Unit (BAP) with project number FEF19004.17.001. I thank to Prof. Dr. Gülgün Ayhan Kılcıgil and Dr. İsmail Çelik for the synthesis of compounds and their valuable supports. I also thank to Assoc. Prof. Dr. Sevil Özkınalı for the useful comments. The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arzu Karayel.

Ethics declarations

Compliance with ethical standards

The ethical standards have been met.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 340 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karayel, A. Molecular stabilities, conformational analyses and molecular docking studies of benzimidazole derivatives bearing 1,2,4-triazole as EGFR inhibitors. Struct Chem 32, 1247–1259 (2021). https://doi.org/10.1007/s11224-021-01760-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-021-01760-8

Keywords

Navigation