Skip to main content
Log in

The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The dye-sensitized solar cells containing a triphenylamine unit as the electron donor connected with a terminal cyanoacrylic acid electron acceptor by 2,2′-bithiophene as π-bridged (D-π-A) has been investigated by density functional theory (DFT) at the B3LYP/6-31G(d) level to shed light on the bridged effect on geometric and electronic properties of the designed dyes. Also, time-dependent DFT (TD-DFT) at a TD-BH and H/6-31+G(d)//BH and H/6-31G(d) level of theory was selected to modulate the electronic absorption spectra and charge-transfer properties of studied dyes. The calculated results show that the strong electron-withdrawing groups bridged the 2,2′-bithiophene efficiently, reduce the energy gaps and provide a red shift of the absorption spectra. The calculated absorption spectra in tetrahydrofuran (THF) are in good agreement with available experimental value for dye D1. Generally, the fundamental parameters, such as vertical and adiabatic ionization potentials (IPa/IPv), vertical and adiabatic electron affinities (EAa/EAv), electron extraction potentials and hole extraction potentials, including hole/electron reorganization energies (λ +/λ ), of studied dyes have been discussed. The improved electronic coupling constant (\(\left| {V_{\text{RP}} } \right|\)), electron injection force (\(\Delta G^{\text{inject}}\)) and light-harvesting efficiency of dye D5 revealed that this dye can be used as a potential sensitizer for TiO2 nanocrystalline solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. B. Oregan, M. Grätzel, Nature 353(6346), 737–740 (1991)

    Article  CAS  Google Scholar 

  2. L.Y. Han, A. Islam, H. Chen, C. Malapaka, B. Chiranjeevi, S.F. Zhang, X.D. Yang, M. Yanagida, Energy Environ. Sci. 5, 6057–6060 (2012)

    Article  CAS  Google Scholar 

  3. Y. Wu, W. Zhu, Chem. Soc. Rev. 42(5), 2039–2058 (2013)

    Article  Google Scholar 

  4. C.Y. Chen, M. Wang, J.Y. Li, N. Pootrakulchote, L. Alibabaei, C.H. Ngoc-le, J.D. Decoppet, J.H. Tsai, C. Grätzel, C.G. Wu, S.M. Zakeeruddin, M. Grätzel, ACS Nano 3, 3103–3109 (2009)

    Article  CAS  Google Scholar 

  5. S. Aghazada, P. Gao, A. Yella, G. Marotta, T. Moehl, J. Teuscher, J.E. Moser, F. De Angelis, M. Grätzel, M.K. Nazeeruddin, Inorg. Chem. 55, 6653–6659 (2016)

    Article  CAS  Google Scholar 

  6. A. Yella, H.W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.G. Diau, C.Y. Yeh, S.M. Zakeeruddin, M. Grätzel, Science 334, 629–634 (2011)

    Article  CAS  Google Scholar 

  7. S. Mathew, A. Yella, P. Gao, R.H. Baker, B.F.E. Curchod, N.A. Astani, L. Tavernelli, U. Rothlisberger, M.K. Nazeeruddin, M. Grätzel, Nat. Chem. 6, 242–247 (2014)

    Article  CAS  Google Scholar 

  8. H. Choi, S. Paek, N. Lim, Y.H. Lee, M.K. Nazeeruddin, J. Ko, Chem. Eur. J. 20(35), 10894–10899 (2014)

    Article  CAS  Google Scholar 

  9. T. Meng, C. Liu, K. Wang, T. He, Y. Zhu, A.A. Enizi, A. Elzatahry, X. Gong, ACS Appl. Mater. Interfaces 8, 1876–1883 (2016)

    Article  CAS  Google Scholar 

  10. A. Mahmood, Sol. Energy 123, 127–144 (2016)

    Article  CAS  Google Scholar 

  11. Z. Yang, C. Shao, D. Cao, RSC Adv. 5, 22892–22898 (2015)

    Article  CAS  Google Scholar 

  12. M. Liang, J. Chen, Chem. Soc. Rev. 42(8), 3453–3488 (2013)

    Article  CAS  Google Scholar 

  13. S. Cai, X. Hu, Z. Zhang, J. Su, X. Li, A. Islam, H. Tian, J. Mater. Chem. A 1(15), 4763–4772 (2013)

    Article  CAS  Google Scholar 

  14. D. Seo, K.W. Park, J. Kim, J. Hong, K. Kwak, Comput. Theor. Chem. 1081, 30–37 (2016)

    Article  CAS  Google Scholar 

  15. Z. Wang, M. Liang, H. Wang, P. Wang, F. Cheng, Z. Sun, X. Song, ChemSusChem 7(3), 795–803 (2014)

    Article  CAS  Google Scholar 

  16. R. Misra, R. Maragani, K.R. Patel, G.D. Sharma, RSC Adv. 4(66), 34904–34911 (2014)

    Article  CAS  Google Scholar 

  17. C. Teng, X. Yang, C. Yang, H. Tian, S. Li, X. Wang, A. Hagfeldt, L. Sun, J. Phys. Chem. C 114(25), 11305–11313 (2010)

    Article  CAS  Google Scholar 

  18. R. Misra, R. Maragani, D. Arora, A. Sharma, G.D. Sharma, Dyes Pigm. 126, 38–45 (2016)

    Article  CAS  Google Scholar 

  19. R. Maragani, M.S. Ansari, A. Banik, R. Misra, M. Qureshi, ACS Omega 2(9), 5981–5991 (2017)

    Article  CAS  Google Scholar 

  20. R. Maragani, R. Misra, M.S. Roy, M.K. Singh, G.D. Sharma, Phys. Chem. Chem. Phys. 19(13), 8925–8933 (2017)

    Article  CAS  Google Scholar 

  21. H.N. Tsao, J. Burschka, C. Yi, F. Kessler, M.K. Nazeeruddin, M. Grätzel, Energy Environ. Sci. 4(12), 4921–4924 (2011)

    Article  CAS  Google Scholar 

  22. H. Dong, M. Liang, C. Zhang, Y. Wu, Z. Sun, S. Xue, J. Phys. Chem. C 120(40), 22822–22830 (2016)

    Article  CAS  Google Scholar 

  23. P.A. Van Hal, J. Knol, B.M. Langeveld-Voss, S.C. Meskers, J.C. Hummelen, R.A. Janssen, J. Phys. Chem. A 104(25), 5974–5988 (2000)

    Google Scholar 

  24. Z. Wang, M. Liang, H. Dong, P. Gao, Y. Su, P. Cai, S. Ding, J. Chen, S. Xue, Org. Lett. 19(14), 3711–3714 (2017)

    Article  CAS  Google Scholar 

  25. C.K. Tai, C.A. Hsieh, K.H. Chang, B.C. Wang, Res. Chem. Intermed. 42(9), 6907–6927 (2016)

    Article  CAS  Google Scholar 

  26. H.N. Tsao, C. Yi, T. Moehl, J.H. Yum, S.M. Zakeeruddin, M.K. Nazeeruddin, M. Grätzel, ChemSusChem 4(5), 591–594 (2011)

    Article  CAS  Google Scholar 

  27. P. Liu, J.J. Fu, M.S. Guo, X. Zuo, Y. Liao, Comput. Theor. Chem. 1015, 8–14 (2013)

    Article  CAS  Google Scholar 

  28. N.V. Krishna, J.V.S. Krishna, S.P. Singh, L. Giribabu, L. Han, I. Bedja, R.K. Gupta, A. Islam, J. Phys. Chem. C 121(12), 6464–6477 (2017)

    Article  CAS  Google Scholar 

  29. M.P. Balanay, D.H. Kim, Comput. Theor. Chem. 1055, 15–24 (2015)

    Article  CAS  Google Scholar 

  30. A. Cravino, S. Roquet, O. Alévêque, P. Leriche, P. Frère, J. Roncali, Chem. Mater. 18(10), 2584–2590 (2006)

    Article  CAS  Google Scholar 

  31. L.L. Estrella, M.P. Balanay, D.H. Kim, J. Phys. Chem. A 120(29), 5917–5927 (2016)

    Article  CAS  Google Scholar 

  32. M. Zhang, Y. Wang, M. Xu, W. Ma, R. Li, P. Wang, Energy Environ. Sci. 6(10), 2944–2949 (2013)

    Article  CAS  Google Scholar 

  33. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J.I. Fujisawa, M. Hanaya, Chem. Commun. 51(88), 15894–15897 (2015)

    Article  CAS  Google Scholar 

  34. A.D. Becke, J. Chem. Phys. 98(7), 5648–5652 (1993)

    Article  CAS  Google Scholar 

  35. S.M. Bouzzine, M. Hamidi, M. Bouachrine, F. Serien-Spirau, J.-P. Lère Porte, J.-M. Sotiropoulos, A. Iraqi, J. Phys. Chem. A 116(39), 9730–9738 (2012)

    Article  CAS  Google Scholar 

  36. R.B.J.S. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72(1), 650–654 (1980)

    Article  CAS  Google Scholar 

  37. A.D. Becke, J. Chem. Phys. 98(2), 1372–1377 (1993)

    Article  CAS  Google Scholar 

  38. J. Preat, C. Michaux, D. Jacquemin, E.A. Perpete, J. Phys. Chem. C 113(38), 16821–16833 (2009)

    Article  CAS  Google Scholar 

  39. M.E. Casida, Recent Adv. Density Funct. Methods 1, 155 (1995)

    Article  CAS  Google Scholar 

  40. F. Furche, R. Ahlrichs, J. Chem. Phys. 117(16), 7433–7447 (2002)

    Article  CAS  Google Scholar 

  41. V. Barone, M. Cossi, J. Phys. Chem. A 102(11), 1995–2001 (1998)

    Article  CAS  Google Scholar 

  42. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24(6), 669–681 (2003)

    Article  CAS  Google Scholar 

  43. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin Jr., J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, GAUSSIAN 09, Revision B.04 (Pittsburgh, Gaussian, 2009)

    Google Scholar 

  44. S.M. Bouzzine, S. Bouzakraoui, M. Bouachrine, M. Hamidi, J. Mol. Struct. Theochem. 726(1), 271–276 (2005)

    Article  CAS  Google Scholar 

  45. J.B. Asbury, Y.Q. Wang, E. Hao, H.N. Ghosh, T. Lian, Res. Chem. Intermed. 27(4), 393–406 (2001)

    Article  CAS  Google Scholar 

  46. G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 42(11), 1819–1826 (2009)

    Article  CAS  Google Scholar 

  47. K. Hara, T. Sato, R. Katoh, A. Furube, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, H. Arakawa, J. Phys. Chem. B 107(2), 597–606 (2003)

    Article  CAS  Google Scholar 

  48. M. Liang, W. Xu, F. Cai, P. Chen, B. Peng, J. Chen, Z. Li, J. Phys. Chem. C 111(11), 4465–4472 (2007)

    Article  CAS  Google Scholar 

  49. L. Sun, F.Q. Bai, Z.X. Zhao, B.Z. Yang, H.X. Zhang, J. Polym. Sci. Part B Polym. Phys. 48(20), 2099–2107 (2010)

    Article  CAS  Google Scholar 

  50. R.A. Marcus, J. Chem. Phys. 43(2), 679–701 (1965)

    Article  CAS  Google Scholar 

  51. N.A. Anderson, T. Lian, Annu. Rev. Phys. Chem. 56, 491–519 (2005)

    Article  CAS  Google Scholar 

  52. M.P. Balanay, D.H. Kim, J. Mol. Struct. Theochem. 910(1), 20–26 (2009)

    Article  CAS  Google Scholar 

  53. G.R. Hutchison, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 127(7), 2339–2350 (2005)

    Article  CAS  Google Scholar 

  54. K.R. Justin, Y.C. Hsu, J.T. Lin, K.M. Lee, K.C. Ho, C.H. Lai, Y.M. Cheng, P.T. Chou, Chem. Mater. 20(5), 1830–1840 (2008)

    Article  Google Scholar 

  55. H.S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices (Academic, San Diego, 2000)

    Google Scholar 

  56. T.J. Meade, H.B. Gray, J.R. Winkler, J. Am. Chem. Soc. 111(12), 4353–4356 (1989)

    Article  CAS  Google Scholar 

  57. D. Matthews, P. Infelta, M. Grätzel, Sol. Energy Mater. Sol. Cells 44(2), 119–155 (1996)

    Article  CAS  Google Scholar 

  58. G. Pourtois, D. Beljonne, J. Cornil, M.A. Ratner, J.L. Brédas, J. Am. Chem. Soc. 124(16), 4436–4447 (2002)

    Article  CAS  Google Scholar 

  59. C.P. Hsu, Acc. Chem. Res. 42(4), 509–518 (2009)

    Article  CAS  Google Scholar 

  60. R.A. Marcus, Rev. Mod. Phys. 65(3), 599–610 (1993)

    Article  CAS  Google Scholar 

  61. M. Hilgendorff, V. Sundström, J. Phys. Chem. B 102(51), 10505–10514 (1998)

    Article  CAS  Google Scholar 

  62. R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa, M. Tachiya, J. Phys. Chem. B 108(15), 4818–4822 (2004)

    Article  CAS  Google Scholar 

  63. A. Hagfeldt, M. Graetzel, Chem. Rev. 95(1), 49–68 (1995)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Volubilis Program (no. MA/11/248), and the convention CNRST/CNRS (Project chimie 1009), for its pertinent help concerning the Gaussian 09 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Mohamed Bouzzine.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2214 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahim, Z., Bouzzine, S., Ait Aicha, Y. et al. The bridged effect on the geometric, optoelectronic and charge transfer properties of the triphenylamine–bithiophene-based dyes: a DFT study. Res Chem Intermed 44, 2009–2023 (2018). https://doi.org/10.1007/s11164-017-3211-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3211-1

Keywords

Navigation