Skip to main content
Log in

Density functional theory study on two D-π-A-type organic dyes containing different anchoring groups for dye-sensitized solar cells

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The electronic structure and absorption spectra of two D-π-A-type organic dyes with different anchoring groups have been investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The effect of anchoring groups on the electronic absorption of the free dyes on (TiO2)9 has been studied for the two carbazole dyes (MK1 and MK2). Results from DFT calculations indicate that hydroxamic acid anchoring group in MK2 lead to much stronger intermolecular charge transfer and adsorption energies on (TiO2)9 cluster. The effect of four different XC functionals (B3LYP, ωB97xD, M06-2X, and CAM-B3LYP) on the transition energies has been tested in order to explore the valid functional for the studied system. The wavelength values from the ωB97xD/6-31+G** level of theory are in excellent agreement with experimental data so this functional was considered to calculate the electronic absorption of the two studied dyes. The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the gap energy (H–L) of the studied dyes are slightly influenced by change of anchoring group. Results reveal that the LUMO energy levels of all studied dyes are higher than the conduction band (CB) of TiO2 (− 4.00 eV). Deprotonation process enhances the efficiency of dye-sensitized solar cells during decreasing adsorption energy of dyes with (TiO2)9 cluster.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 3
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991). Nature 353(6346):737–740

    Article  Google Scholar 

  2. Urbani M, Grätzel M, Nazeeruddin MK, Torres T (2014). Chem Rev 114(24):12330–12331

    Article  CAS  PubMed  Google Scholar 

  3. Hong Y, Liao J-Y, Cao D, Zang X, Kuang D-B, Wang L, Meier H, Su C-Y, Org J (2011). Chem. 76(19):8015–8021

    CAS  Google Scholar 

  4. Yen Y-S, Chen W-T, Hsu C-Y, Chou H-H, Lin JT, Yeh M-CP (2011). Org Lett 13(18):4930–4933

    Article  CAS  PubMed  Google Scholar 

  5. Murakami TN, Koumura N, Kimura M, Mori S (2014). Langmuir 30(8):2274–2279

    Article  CAS  PubMed  Google Scholar 

  6. Yao Z, Zhang M, Wu H, Yang L, Li R, Wang P, Am J (2015). Chem Soc 137(11):3799–3802

    Article  CAS  Google Scholar 

  7. Ren X-F, Kang G-J, He Q-Q, Mol J (2016). Model. 22(8):1–9

    Google Scholar 

  8. Zhang J, Kan Y-H, Li H-B, Geng Y, Wu Y, Su Z-M (2012). Dyes Pigments 95:313–321

    Article  CAS  Google Scholar 

  9. Yella A, Lee H-W, Tsao HN, Yi C, Chandiran AK, Nazeeruddin MK, Diau EW-G, Yeh C-Y, Zakeeruddin SM, Grätzel M (2011). Science 334(6056):629–634

    Article  CAS  PubMed  Google Scholar 

  10. Xie Y, Tang Y, Wu W, Wang Y, Liu J, Li X, Tian H, Zhu W-H, Am J (2015). Chem Soc 137(44):14055–14058

    Article  CAS  Google Scholar 

  11. Karthikeyan S, Lee JY, Phys J (2013). Chem A 117(42):10973–10979

    CAS  Google Scholar 

  12. Gu X, Sun Q (2013). Phys Chem Chem Phys 15(37):15434–15440

    Article  CAS  PubMed  Google Scholar 

  13. Higashino T, Imahori H (2015). Dalton Trans 44(2):448–463

    Article  CAS  PubMed  Google Scholar 

  14. Santhanamoorthi N, Lo C-M, Jiang J-C (2013). J Phys Chem Lett 4:524–530

    Article  CAS  PubMed  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Gaussian, Inc., Wallingford

    Google Scholar 

  16. Becke AD (1993). J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  17. Yang Y, Bai FQ, Zhang HX, Zhou X, Sun CC (2011). Comput Theoret Chem 963:298

    Article  CAS  Google Scholar 

  18. Casida ME, Jamorski C, Casida KC, Salahub DR (1998). J Chem Phys 108:4439

    Article  CAS  Google Scholar 

  19. Stratmann RE, Scuseria GE (1998). J Chem Phys 109:8218

    Article  CAS  Google Scholar 

  20. Matsuzawa NN, Ishitani A (2001). J Phys Chem A 105:4953

    Article  CAS  Google Scholar 

  21. Tomasi J, Mennucci B, Cammi R (2005). Chem Rev 105:2999

    Article  CAS  PubMed  Google Scholar 

  22. Chai JD, Head-Gordon M (2008). J Chem Phys 128(8):084106

    Article  PubMed  Google Scholar 

  23. Zhao Y, Truhlar DG (2006). J Chem Phys 124(22):224105

    Article  PubMed  Google Scholar 

  24. Yanai T, Tew DP (2004). Chem Phys Lett 393(1–3):51–57

    Article  CAS  Google Scholar 

  25. Jono R, Fujisawa JI, Segawa H, Yamashita K (2011). J Phys Chem Lett 2:1167–1170

    Article  CAS  PubMed  Google Scholar 

  26. Labat F, Ciofini I, Hratchian HP, Frisch MJ, Raghavachari K (2011) Adamo C. J Phys Chem C 115(10):4297–4306

    Article  CAS  Google Scholar 

  27. Sanchez-de-Armas R, San Miguel MA, Oviedo J, Sanz JF (2012). Phys Chem Chem Phys 14(1):225–233

    Article  CAS  PubMed  Google Scholar 

  28. De Angelis F, Fantacci S, Selloni A, Gratzel M, Nazeeruddin MK (2007). Nano Lett 7(10):3189–3195

    Article  PubMed  Google Scholar 

  29. Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006). Int. J Quantum Chem 106(15):3214–3234

    Article  CAS  Google Scholar 

  30. Sanchez-de-Armas R, San-Miguel MA, Oviedo J, Marquez A, Sanz JF (2011). Phys Chem Chem Phys 13(4):1506–1514

    Article  CAS  PubMed  Google Scholar 

  31. Sanchez-de-Armas R, Oviedo J, Miguel MAS (2011) Sanz JF. J Phys Chem C 115(22):11293–11301

    Article  CAS  Google Scholar 

  32. Srinivas K, Yesudas K, Bhanuprakash K, Rao VJ, Giribabu LA, Phys J (2009). Chem C 113(46):20117–20126

    CAS  Google Scholar 

  33. Xia H-Q, Wang J, Bai F-Q, Zhang H-X (2015). Dyes Pigments 113:87–95

    Article  CAS  Google Scholar 

  34. Khoudiakov M, Parise AR, Brunschwig BS (2003). J Am Chem Soc 125:4637–4642

    Article  CAS  PubMed  Google Scholar 

  35. Koenigsmann C, Ripolles TS, Brennan BJ, Negre CFA, Koepf M, Durrell AC, Milot RL, Torre JA, Crabtree RH, Batista VS, Brudvig GW, Bisquert J, Schmuttenmaer CA (2014). Phys Chem Chem Phys 16:16629–16641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge with thanks the technical support and funding by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant no. 130-491-D1435. The authors are also grateful to the HPCC (Aziz supercomputer) for the resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaaban A. Elroby.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elroby, S.A., Jedidi, A. Density functional theory study on two D-π-A-type organic dyes containing different anchoring groups for dye-sensitized solar cells. Struct Chem 31, 1125–1135 (2020). https://doi.org/10.1007/s11224-020-01489-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-020-01489-w

Keywords

Navigation