Skip to main content

Advertisement

Log in

Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) was employed to investigate the role of fused thiophene and bridged thiophene π-linkers as well as acceptor unit fluorination in modifying the properties of dye sensitizers for dye-sensitized solar cells (DSSCs). A series of novel (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives were simulated using DFT and time-dependent density functional theory to calculate their electronic and optical properties, population analysis, global reactivity index and light harvesting efficiency. The results showed that dyes with bridged thiophene π-linker have narrower energy bandgap (E g) and longer absorption wavelength (λ max) than those with fused thiophene π-linker. Also, fluorination of the acceptor unit of the dyes enhanced the electron accepting ability of 2-cyano-2-pyran-4-ylidene-acetic acid by lowering the lowest unoccupied molecular orbital (LUMO) energy, which leads to lower E g, lower chemical hardness (η), and longer wavelength. Therefore, incorporation of fluorine atoms at the acceptor unit makes the conduction-band potential more favorable, leading to effective charge separation and charge transfer between donor and acceptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. X.C. Hu, A. Damjanovic, T. Ritz, K. Schulten, Proc. Natl. Acad. Sci. U.S.A. 95(11), 5935–5941 (1998)

    Article  CAS  Google Scholar 

  2. V.A. Boichenko, E. Greenbaum, M. Seibert, Hydrogen production by photosynthetic microorganisms, in Photoconversion of solar energy, molecular to global photosynthesis, ed. by M.D. Archer, J. Barber, vol 2 (Imperial college Press, London, 2004), pp. 397–452

  3. C. Agrafiotis, M. Roeb, A.G. Konstandopoulos, L. Nalbandian, V.T. Zaspalis, C. Sattler, P. Stobbe, A.M. Steele, Sol. Energy 79(4), 409–421 (2005)

    Article  CAS  Google Scholar 

  4. J. Bolton, Solar Power and Fuels. Academic, ISBN 0-12-112350-2 (1977)

  5. B. O’regan, M. Grätzel, Nature 353, 737 (1991)

    Article  Google Scholar 

  6. I. Chung, B. Lee, J. He, R.P.H. Chang, M.G. Kanatzids, Nature 485, 486–489 (2012)

    Article  CAS  Google Scholar 

  7. K. Kalyanasundaram, M. Grätzel, Coord. Chem. Rev. 177, 347 (1998)

    Article  CAS  Google Scholar 

  8. A. Hagfeldt, M. Grätzel, Acc. Chem. Res. 33, 269 (2000)

    Article  CAS  Google Scholar 

  9. J. Bisquert, D. Cahen, G. Hodes, S. Ruhle, A. Zaban, J. Phys. Chem. 108, 8106–8118 (2004)

    Article  CAS  Google Scholar 

  10. I.O. Corneliu, P. Petre, C. Fanica, F. Marilena, A.G. Mihai, Materials 6, 2372–2392 (2013)

    Article  Google Scholar 

  11. M. Bourass, A.T. Benjelloun, M. Hamidi, M. Benzakour, M. Mcharfi, M. Sfaira, F. Serein-Spirau, J.P. Lère-Porte, J.M. Sotiropoulos, S.M. Bouzzine, M. Bouachrine, J. Saudi Chem. Soc. (2013). doi:10.1016/j.jscs.2013.01.003

    Google Scholar 

  12. H.-B. Li, J.-Z. Zhang, J. Zhang, Y. Wu, Y.A. Duan, Z.M. Su, Y. Geng, Dyes Pigments 108, 106–114 (2014)

    Article  CAS  Google Scholar 

  13. U. Mehmood, I.A. Hussein, K. Harrabi, S. Ahmed, Adv. Mater. Sci. Eng. (2015). doi:10.1155/2015/286730s

    Google Scholar 

  14. A. Irfan, A.G. Al-sehemi, J. Mol. Model. 18(11), 4893–4900 (2012)

    Article  CAS  Google Scholar 

  15. H. Kafafy, H. Wu, M. Peng, H. Hu, K. Yan, R. El-Shishtawy, D. Zou, Int. J. Photoenergy (2014). doi:10.1155/2014/548914.10

  16. Z.S. Wang, Y. Cui, K. Hara, Y. Dan-oh, C. Kasada, A. Shinpo, Adv. Mater. 19, 1138–1141 (2007)

    Article  CAS  Google Scholar 

  17. A. Burke, L. Schmidt-Mende, S. Ito, M. Gratzel, Chem. Commun. 3, 234–236 (2007)

    Article  Google Scholar 

  18. W.H. Howie, F. Claeyssens, H. Miura, L.M. Peter, J. Am. Chem. Soc. 130, 1367–1375 (2008)

    Article  CAS  Google Scholar 

  19. R.M. El-shishtawy, M.A. Abdullah, G.A. Saadullah, A.K.E. Shaaban, J. Mol. Model. 20(6), 2241–2245 (2014). doi:10.1007/s00894-014-2241-5

    Article  Google Scholar 

  20. A. Irfan, S. Muhammad, A.G. Alsehemi, M.S. Al-Assiri, A.R. Chaudhry, J. Theor. Comput. Chem. 14(4) (2015). doi:10.1142/S0219633615500297

  21. Y. Numata, A. Islam, H. Chen, L. Han, Energy Environ. Sci. 5, 8548–8552 (2012)

    Article  CAS  Google Scholar 

  22. A. Irfan, R. Jin, A.G. Al-sehemi, A.M. Asiri, Spectrochim. Acta Part A Mol. Bimol. Specif. 110, 60–66 (2013)

    Article  CAS  Google Scholar 

  23. W. Zhu, Y. Wu, S. Wang, W. Li, X. Li, J. Chen, Z.S. Wang, H. Tian, Adv. Funct. Mater. 21, 756–763 (2011)

    Article  CAS  Google Scholar 

  24. B. Semire, O.A. Odunola, I.A. Adejoro, J. Mol. Model. 18, 2755–2760 (2012)

    Article  Google Scholar 

  25. B.G. Kim, C.G. Zhen, E.J. Jeong, J. Kieffer, J. Kim, Adv. Funct. Mater. 22, 1606–1612 (2012)

    Article  CAS  Google Scholar 

  26. B. Semire, O.A. Odunola, Indones. J. Chem. 15(1), 93–100 (2015)

    CAS  Google Scholar 

  27. B. Semire, A. Oyebamiji, M. Ahmad, Pak. J. Chem. 2(4), 166–173 (2012)

    Article  CAS  Google Scholar 

  28. W. Fan, D. Tan, W.Q. Deng, Chem. Phys. Chem. 13, 2051–2060 (2012)

    CAS  Google Scholar 

  29. C.K. Tai, Y.J. Chen, H.W. Chang, P.L. Yeh, B.C. Wang, Comput. Theor. Chem. 971, 42–50 (2011)

    Article  CAS  Google Scholar 

  30. A. Irfan, J. Theor. Comput. Chem. (2014). doi:10.1142/S021963341500138

    Google Scholar 

  31. H.W. Ham, Y.S. Kim, Thin Solid Films 518, 6558–6563 (2010)

    Article  CAS  Google Scholar 

  32. C.R. Zhang, Z.J. Liu, Y.H. Chen, Y.Z. Wu, W. Feng, D.B. Wang, Curr. Appl. Phys. 10, 77–83 (2010)

    Article  CAS  Google Scholar 

  33. T. Ruiz-Anchondo, N. Flores-Holguín, D. Glossman-Mitnik, Molecules 15, 4490–4510 (2010)

    Article  CAS  Google Scholar 

  34. B. Semire, A. Oyebamiji, O.A. Odunola, Chem. Res. Intermed. 42, 4605–4619 (2016)

    Article  CAS  Google Scholar 

  35. Y. Luo, D. Jonsson, P. Norman, K. Ruud, O. Vahtras, B. Minaev, H. Ågre, A. Rizzo, K.V. Mikkelsen, Int. J. Quantum Chem. 70, 219–239 (1998)

    Article  CAS  Google Scholar 

  36. F. Furche, K. Burke, A. Spellmeyer (eds.), Annual Reports in Computational Chemistry, vol. 1 (Elsevier, Amsterdam, 2005), pp. 19–30

    Book  Google Scholar 

  37. C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37, 785 (1988)

    Article  CAS  Google Scholar 

  38. A.D. Becke, J. Phys. Chem. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  39. D. Jacquemin, E.A. Perpète, I. Ciofini, C. Adamo, Acc. Chem. Res. 42, 326–334 (2008)

    Article  Google Scholar 

  40. Spartan 14, Wavefunction, INC, Irvine, CA (2015)

  41. S.M. Bouzzine, M. Hamidi, M. Bouachrine, Orbital 1, 203 (2009)

    CAS  Google Scholar 

  42. H. Wang, B. Wang, J. Yu, Y. Hu, C. Xia, J. Zhang, R. Liu, Sci. Rep. 5, 9305 (2015). doi:10.1038/srep09305

    Article  Google Scholar 

  43. M.E. Reda, A.M. Asiri, S.G. Aziz, S.A.K. Elroby, J. Mol. Model. 20, 2241 (2014)

    Article  Google Scholar 

  44. B. Aydogan, A.S. Gundogan, T. Ozturk, Y. Yagci, Macromolecules 41, 3468 (2008)

    Article  CAS  Google Scholar 

  45. J.G. Amazonas, J.R. Guimaraes, S.C. Santos Costa, B. Laks, J.D. Nero, J. Mol. Struct. THEOCHEM. 759(1), 87–91 (2006)

    Article  Google Scholar 

  46. M.M. Oliva, S.R. Gonzalez, J. Casado, J.T.L. Navarrete, J.S. Seixas de Melo, S. Rojen, Port. Electrochim. Acta. 27(5), 533–537 (2009)

    Article  CAS  Google Scholar 

  47. B. Semire, O.A. Odunola, Quim. Nova 37(5), 833–838 (2014)

    CAS  Google Scholar 

  48. M.-W. Lee, J.-Y. Kim, H.J. Son, J.Y. Kim, B.S. Kim, H. Kim, D.-K. Lee, K. Kim, D.-H. Lee, M.J. Ko, Sci. Rep. 5, 7711 (2014). doi:10.1038/srep07711

    Article  Google Scholar 

  49. X. Lu, S. Wei, C.-M.L. Wu, S. Li, W. Guo, J. Phys. Chem. C 115(9), 3753–3761 (2011)

    Article  CAS  Google Scholar 

  50. R. Soto-Rojo, J. Baldenebro-López, D. Glossman-Mitnik, Int. J. Photoenergy (2016). doi:10.1155/2016/6479649

    Google Scholar 

  51. B.S. Chen et al., J. Mater. Chem. 21, 1937–1945 (2011)

    Article  CAS  Google Scholar 

  52. J. Preat, C. Michaux, D. Jacquemin, E.A. Perpete, J. Phys. Chem. C 113, 16821–16833 (2009)

    Article  CAS  Google Scholar 

  53. R.G. Pearson, Acc. Chem. Res. 26(5), 250–255 (1993)

    Article  CAS  Google Scholar 

  54. R.G. Parr, W. Yang, J. Am. Chem. Soc. 106, 4049–4050 (1984)

    Article  CAS  Google Scholar 

  55. T. Koopmans, Physica 1, 104–113 (1934)

    Article  Google Scholar 

  56. R.G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121, 1922–1924 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Banjo Semire.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Semire, B., Oyebamiji, A.K. & Odunola, O.A. Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–π–A dye-sensitized solar cells: DFT–TDDFT approach. Res Chem Intermed 43, 1863–1879 (2017). https://doi.org/10.1007/s11164-016-2735-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-016-2735-0

Keywords

Navigation