Skip to main content
Log in

Structure-based virtual screening to identify inhibitors against Staphylococcus aureus MurD enzyme

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The MurD enzyme of Staphylococcus aureus is an attractive drug target as it is essential and ubiquitous in bacteria but absent in mammalian cells. In the present study, we performed in silico high-throughput virtual screening with small molecule library of 1.60 million compounds to identify potential hits. We used S. aureus modeled MurD protein for this purpose and to find the best leads, dock complexes were further subjected to the extra-precision docking and binding free energy calculations by MM-GBSA approach. It is evident that van der Waals and Coulomb energy terms are major favorable contributors while electrostatic solvation energy term strongly disfavors the binding of ligands to the S. aureus MurD enzyme. The inhibitory activity of two selected virtual hits H5 and H10 was performed against S. aureus MurD enzyme using malachite green assay. In in vitro antibacterial screening, compound H5 inhibited the growth of S. aureus NCIM 5021, S. aureus NCIM 5022, and methicillin-resistant S. aureus (MRSA strain 43300) at high concentrations while the other tested compound H10 was inactive against all the tested strains. In order to validate the stability of inhibitor-protein complex, compound H5 with the highest inhibitory against S. aureus MurD and lowest binding free energy was subjected to 30-ns molecular dynamics simulation. Further, ADMET predictions showed the favorable pharmacokinetic profile of compounds H5 and H10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DAP:

2,6-diaminopimelic acid

d-Glu:

d-glutamic acid

MurC:

UDP-N-acetylmuramate:l-Ala ligase

MRSA:

methicillin-resistant Staphylococcus aureus

MIC:

minimum inhibitory concentration

MBC:

minimum bactericidal concentration

MurD:

UDP-N-acetylmuramoyl-l-Ala:d-Glu ligase

MurE:

UDP-N-acetylmuramoyl-l-Ala-d-Glu:meso-DAP ligase

MurF:

UDPN-acetylmuramoyl-l-Ala-g-d-Glu-meso-DAP (or l-Lys):d-Ala-d-Ala ligase

MurNAc:

N-acetylmuramic acid

UDP:

uridine-5′-diphosphate

RMSD:

root mean square deviation

UMA:

uridine-5′-diphosphate-N-acetylmueamoyl-l-alanine

UMAG:

UDP-N-acetylmuramoyl-l-alanine-d-glutamat

References

  1. World Health Organization. Antimicrobial resistance: global report on surveillance. (2014), http://apps.who.int/iris/bitstream/10665/112647/1/WHO_HSE_PED_AIP_2014.2_eng.pdf?ua=1. Accessed 20 Jan 2018

  2. Nambiar S, Laessig K, Toerner J, Farley J, Cox E (2014) Antibacterial drug development: challenges, recent developments, and future considerations. Clin Pharmacol Ther 96:147–149

    CAS  PubMed  Google Scholar 

  3. Duval X, Delahaye F, Alla F, Tattevin P, Obadia JF, Le Moing V, Doco-Lecompte T, Celard M, Poyart C, Strady C, Chirouze C, Bes M, Cambau E, Iung B, Selton-Suty C, Hoen B (2012) Temporal trends in infective endocarditis in the context of prophylaxis guideline modifications: three successive population-based surveys. J Am Coll Cardiol 59:1968–1976

    PubMed  Google Scholar 

  4. Fedeli U, Schievano E, Buonfrate D, Pellizzer G, Spolaore P (2011) Increasing incidence and mortality of infective endocarditis: a population-based study through a record-linkage system. BMC Infect Dis 11:48

    PubMed  PubMed Central  Google Scholar 

  5. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, Blanot D (2008) Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev 32:168–207

    CAS  PubMed  Google Scholar 

  6. Smith CA (2006) Structure, function and dynamics in the mur family of bacterial cell wall ligases. J Mol Biol 362:640–655

    CAS  PubMed  Google Scholar 

  7. Bouhss A, Dementin S, van Heijenoort J, Parquet C, Blanot D (2002) MurC and MurD synthetases of peptidoglycan biosynthesis: borohydride trapping of acylphosphate intermediates. Methods Enzymol 354:189–196

    CAS  PubMed  Google Scholar 

  8. Eveland SS, Pompliano DL, Anderson MS (1997) Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-g-glutamate ligases: identification of a ligase superfamily. Biochem 36:6223–6229

    CAS  Google Scholar 

  9. Bouhss A, Dementin S, Parquet C, Mengin-Lecreulx D, Bertrand JA, Le Beller D, Dideberg O, van Heijenoort J, Blanot D (1999) Role of the ortholog and paralog amino acid invariants in the active site of the UDP-MurNAc-l-alanine:D-glutamate ligase (MurD). Biochem 38:12240–12247

    CAS  Google Scholar 

  10. van Heijenoort J (2001) Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep 18:503–519

    PubMed  Google Scholar 

  11. Skedelj V, Tomasic T, Masic LP, Zega A (2011) ATP-binding site of bacterial enzymes as a target for antibacterial drug design. J Med Chem 54:915–929

    CAS  PubMed  Google Scholar 

  12. Walsh AW, Falk PJ, Thanassi J, Discotto L, Pucci MJ, Ho HT (1999) Comparison of the D-glutamate-adding enzymes from selected gram-positive and gram-negative bacteria. J Bacteriol 181:5395–5401

    CAS  PubMed  PubMed Central  Google Scholar 

  13. El Zoeiby A, Sanschagrin F, Levesque RC (2003) Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol 47:1–12

    PubMed  Google Scholar 

  14. El-Sherbeini M, Geissler WM, Pittman J, Yuan X, Wong KK, Pompliano DL (1998) Cloning and expression of Staphylococcus aureus and Streptococcus pyogenes murD genes encoding uridine diphosphate N-acetylmuramoyl-L-alanine:D-glutamate ligases. Gene 210:117–125

    CAS  PubMed  Google Scholar 

  15. Bertrand JA, Auger G, Martin L, Fanchon E, Blanot D, Le Beller D, van Heijenoort J, Dideberg O (1999) Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol 289:579–590

    CAS  PubMed  Google Scholar 

  16. Gordon E, Flouret B, Chantalat L, van Heijenoort J, Mengin-Lecreulx D, Dideberg O (2001) Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem 276:10999–11006

    CAS  PubMed  Google Scholar 

  17. Yan Y, Munshi S, Leiting B, Anderson MS, Chrzas J, Chen Z (2000) Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J Mol Biol 304:435–445

    CAS  PubMed  Google Scholar 

  18. Perdih A, Kotnik M, Hodoscek M, Solmajer T (2007) Targeted molecular dynamics simulation studies of binding and conformational changes in E. coli MurD. Proteins 68:243–254

    CAS  PubMed  Google Scholar 

  19. Bouhss A, Mengin-Lecreulx D, Blanot D, van Heijenoort J, Parquet C (1997) Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochem 36:11556–11563

    CAS  Google Scholar 

  20. Barreteau H, Sosic I, Turk S, Humljan J, Tomasic T, Zidar N, Herve M, Boniface A, Peterlin-Masic L, Kikelj D, Mengin-Lecreulx D, Gobec S, Blanot D (2012) MurD enzymes from different bacteria: evaluation of inhibitors. Biochem Pharmacol 84:625–632

    CAS  PubMed  Google Scholar 

  21. Gegnas LD, Waddell ST, Chabin RM, Reddy S, Wong KK (1998) Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg Med Chem Lett 8:1643–1648

    CAS  PubMed  Google Scholar 

  22. Gobec S, Urleb U, Auger G, Blanot D (2001) Synthesis and biochemical evaluation of some novel N-acyl phosphono- and phosphinoalanine derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. Die Pharmazie 56:295–297

    CAS  PubMed  Google Scholar 

  23. Strancar K, Blanot D, Gobec S (2006) Design, synthesis and structure–activity relationships of new phosphinate inhibitors of MurD. Bioorg Med Chem Lett 16:343–348

    CAS  PubMed  Google Scholar 

  24. Auger G, van Heijenoort J, Blanot D (1995) Synthesis of N-Acetylmuramic acid derivatives as potential inhibitors of the D-glutamic acid-adding enzyme. J Prakt Chem 337:351–357

    CAS  Google Scholar 

  25. Kotnik M, Humljan J, Contreras-Martel C, Oblak M, Kristan K, Hervé M, Blanot D, Urleb U, Gobec S, Dessen A, Solmajer T (2007) Structural and functional characterization of enantiomeric glutamic acid derivatives as potential transition state analogue inhibitors of MurD ligase. J Mol Biol 370:107–115

    CAS  PubMed  Google Scholar 

  26. Humljan J, Kotnik M, Contreras-Martel C, Blanot D, Urleb U, Dessen A, Solmajer T, Gobec S (2008) Novel naphthalene-N-sulfonyl-D-glutamic acid derivatives as inhibitors of MurD, a key peptidoglycan biosynthesis enzyme. J Med Chem 51:7486–7494

    CAS  PubMed  Google Scholar 

  27. Pratviel-Sosa F, Acher F, Trigalo F, Blanot D, Azerad R, van Heijenoort J (1994) Effect of various analogues of D-glutamic acid on the D-glutamate-adding enzyme from Escherichia coli. FEMS Microbiol Lett 115:223–228

    CAS  PubMed  Google Scholar 

  28. Perdih A, Bren U, Solmajer T (2009) Binding free energy calculations of N-sulphonyl-glutamic acid inhibitors of MurD ligase. Mol Model 15:983–996

    CAS  Google Scholar 

  29. Sova M, Kovac A, Turk S, Hrast M, Blanot D, Gobec S (2009) Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem 37:217–222

    CAS  PubMed  Google Scholar 

  30. Zidar N, Tomasic T, Sink R, Rupnik V, Kovac A, Turk S, Patin D, Blanot D, Contreras Martel C, Dessen A, Müller Premru M, Zega A, Gobec S, Peterlin Masic L, Kikelj D (2010) Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem 53:6584–6594

    CAS  PubMed  Google Scholar 

  31. Zidar N, Tomasic T, Sink R, Kovac A, Patin D, Blanot D, Contreras-Martel C, Dessen A, Premru MM, Zega A, Gobec S, Masic LP, Kikelj D (2011) New 5-benzylidenethiazolidin-4-one inhibitors of bacterial MurD ligase: design, synthesis, crystal structures, and biological evaluation. Eur J Med Chem 46:5512–5523

    CAS  PubMed  Google Scholar 

  32. Sosic I, Barreteau H, Simcic M, Sink R, Cesar J, Zega A, Grdadolnik SG, Contreras-Martel C, Dessen A, Amoroso A, Joris B, Blanot D, Gobec S (2011) Second-generation sulfonamide inhibitors of D-glutamic acid-adding enzyme: activity optimisation with conformationally rigid analogues of D-glutamic acid. Eur J Med Chem 46:2880–2894

    CAS  PubMed  Google Scholar 

  33. Perdih A, Hrast M, Barreteau H, Gobec S, Wolber G, Solmajer T (2014) Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg Med Chem 22:4124–4134

    CAS  PubMed  Google Scholar 

  34. Perdih A, Kovac A, Wolber G, Blanot D, Gobec S, Solmajer T (2009) Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett 19:2668–2673

    CAS  PubMed  Google Scholar 

  35. Turk S, Kovac A, Boniface A, Bostock JM, Chopra I, Blanot D, Gobec S (2009) Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg Med Chem 17:1884–1889

    CAS  PubMed  Google Scholar 

  36. Kotnik M, Anderluh PS, Prezelj A (2007) Development of novel inhibitors targeting intracellular steps of peptidoglycan biosynthesis. Curr Pharm Des 13:2283–2309

    CAS  PubMed  Google Scholar 

  37. Tomasic T, Zidar N, Sink R, Kovac A, Blanot D, Contreras-Martel C, Dessen A, Muller-Premru M, Zega A, Gobec S, Kikelj D, Masic LP (2011) Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). J Med Chem 54:4600–4610

    CAS  PubMed  Google Scholar 

  38. Tomasic T, Sink R, Zidar N, Fic A, Contreras-Martel C, Dessen A, Patin D, Blanot D, Muller-Premru M, Gobec S, Zega A, Kikelj D, Masic LP (2012) Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. ACS Med Chem Lett 3:626–630

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Azam MA, Jupudi S, Saha N, Paul RK (2018) Combining molecular docking and molecular dynamics studies for modelling Staphylococcus aureus MurD inhibitory activity. SAR QSAR Environ Res 30:1–20

    PubMed  Google Scholar 

  40. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Sanschagrin PC, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem 49:6177–6196

    CAS  PubMed  Google Scholar 

  41. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins: Struct Funct Bioinf 55:351–367

    CAS  Google Scholar 

  42. Li J, Abel R, Zhu K, Cao Y, Zhao S, Friesner RA (2011) The VSGB 2.0 model: a next generation energy model for high resolution protein structure modelling. Proteins 79:2794–2812

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Guo Z, Mohanty U, Noehre J, Sawyer TK, Sherman W, Krilov G (2010) Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des 75:348–359

    CAS  PubMed  Google Scholar 

  44. Harder E, Damm W, Maple J, Wu C, Reboul M, Xiang JY, Wang L, Lupyan D, Dahlgren MK, Knight JL, Kaus JW, Cerutti DS, Krilov G, Jorgensen WL, Abel R, Friesner RA (2016) OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput 12:281–296

    CAS  PubMed  Google Scholar 

  45. Jorgensen WJ, Madura JD (1985) Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys 56:1381–1392

    CAS  Google Scholar 

  46. Lawrence CP, Skinner JL (2003) Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett 372:842–847

    CAS  Google Scholar 

  47. Essmann U, Perera L, Berkowit ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    CAS  Google Scholar 

  48. Martyna GJ, Klein ML, Tuckerman M (1992) Nose-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643

    Google Scholar 

  49. Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular dynamics algorithms. J Chem Phys 101:4177–4189

    CAS  Google Scholar 

  50. Auger G, Martin L, Bertrand J, Ferrari P, Fanchon E, Vaganay S, Petillot Y, van Heijenoort J, Blanot D, Dideberg O (1998) Large-scale preparation, purification, and crystallization of UDP-N-acetylmuramoyl-L-alanine: D-glutamate ligase from Escherichia coli. Prot Express Purif 13:23–29

    CAS  Google Scholar 

  51. Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    CAS  Google Scholar 

  52. Clinical and Laboratory Standard Institute (CLSI) (2007) Methods for dilution antibacterial susceptibility test for Bacteria that grow aerobically, 7th ed. Approved Standard (MA7-A7); Clinical and Laboratory Standard Institute: Wayne. 27:133

  53. Tomasic T, Kovac A, Simcic M, Blanot D, Grdadolnik SG, Gobec S, Kikelj D, Peterlin Masic L (2011) Novel 2-thioxothiazolidin-4-one inhibitors of bacterial MurD ligase targeting D-Glu- and diphosphate-binding sites. Eur J Med Chem 46:3964–3975

    CAS  PubMed  Google Scholar 

Download references

Funding

We would like to thank the Science and Engineering Research Board (SERB), Government of India, for the financial support (No. EMR/2016/002981).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Afzal Azam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 3382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, M.A., Jupudi, S. Structure-based virtual screening to identify inhibitors against Staphylococcus aureus MurD enzyme. Struct Chem 30, 2123–2133 (2019). https://doi.org/10.1007/s11224-019-01330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01330-z

Keywords

Navigation