Skip to main content
Log in

DFT study on the regio- and stereoselectivity of the organocatalytic aza-Diels-Alder reaction of crotonaldehyde and cyclic 1-aza-1,3-butadiene

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The mechanism of 1,4-, 1,2-, and 3,4-cyclization reactions of cyclic 1-azadiene 1 with an organocatalyst 4 has been studied theoretically using DFT method. The reactions proceed in a stepwise fashion, with zwitterionic intermediates. The most favorable cyclization reaction takes place along the C–C pathway of the 1,4-cyclization reaction, under a combination of kinetic and thermodynamic control. The reaction is characterized by the nucleophilic attack of 4 (C5) to the electrophilic center of 1 (C1), leading to the formation of cycloadduct 6, which correctly explains the source of the regioselectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Fig. 2
Scheme 5
Fig. 3

Similar content being viewed by others

References

  1. Long J, Ding K (2001) Engineering catalysts for enantioselective addition of diethylzinc to aldehydes with racemic amino alcohols: nonlinear effects in asymmetric deactivation of racemic catalysts. Angew Chem 113:544–547. https://doi.org/10.1002/1521-3773(20010202)

    Article  Google Scholar 

  2. Dalko PI, Moisan L (2001) Enantioselective organocatalysis. Angew Chem 113:3726–3748. https://doi.org/10.1002/1521-3773(20011015)

    Article  Google Scholar 

  3. List B, Yang JW (2006). The organic approach to asymmetric catalysis 313:1584–1586. https://doi.org/10.1126/science.1131945

    Article  CAS  Google Scholar 

  4. Seayad J, List B (2005) Asymmetric organocatalysis. Org Biomol Chem 3:719–724. https://doi.org/10.1039/B415217B

    Article  CAS  PubMed  Google Scholar 

  5. Berkessel A, GrRger H (2004) Asymmetric organocatalysis: from biomimetic concepts to applications in asymmetric synthesis Wiley-VCH Weinheim

  6. Cozzi F (2006) Immobilization of organic catalysts: when why and how. Adv Synth Catal 348:1367–1390. https://doi.org/10.1002/adsc.200606096

    Article  CAS  Google Scholar 

  7. Houk KN, List B (2004) Asymmetric organocatalysis. Acc Chem Res 37:487–621. https://doi.org/10.1021/ar040216w

    Article  CAS  Google Scholar 

  8. Kocovsky P, Malkov AV (2006) Organocatalysis in organic synthesis. Tetrahedron 62:255–502. https://doi.org/10.1039/b516289k

    Article  CAS  Google Scholar 

  9. List B (2007) Introduction: organocatalysis. Chem Rev 107:5413–5883. https://doi.org/10.1021/cr078412e

    Article  CAS  Google Scholar 

  10. Yang JW, Hechavarria Fonseca MT, List B (2005) Catalytic asymmetric reductive Michael cyclization. J Am Chem Soc 127:15036–15037. https://doi.org/10.1055/s-2005-921650

    Article  CAS  PubMed  Google Scholar 

  11. Huang Y, Walji AM, Larsen CH, MacMillan DWC (2005) Enantioselective organo-cascade catalysis. J Am Chem Soc 127:15051–15053. https://doi.org/10.1021/ja055545d

    Article  CAS  PubMed  Google Scholar 

  12. Ramachary DB, Reddy YV (2012) Dienamine catalysis: an emerging technology in organic synthesis. Eur J Org Chem;865–887 doi:https://doi.org/10.1002/ejoc.201101157

  13. Arceo E, Melchiorre P (2012) Extending the aminocatalytic HOMO-raising activation strategy: where is the limit? Angew Chem Int Ed 51:5290–5292. https://doi.org/10.1002/anie.201109036

    Article  CAS  Google Scholar 

  14. Jansen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA (2012) The diarylprolinol silyl ether system: a general organocatalyst. Acc Chem Res 45:248–264. https://doi.org/10.1021/ar200149w

    Article  CAS  Google Scholar 

  15. Marigo M, Wabnitz TC, Fielenbach D, Jørgensen KA (2005) Enantioselective organocatalyzed α-sulfenylation of aldehydes. Angew Chem Int Ed 44:794–797. https://doi.org/10.1002/anie.200462101

    Article  CAS  Google Scholar 

  16. Xu L-W, Li L, Shi Z-H (2010) Asymmetric synthesis with silicon-based bulky amino organocatalysts. Adv Synth Catal 352:243–279. https://doi.org/10.1021/ja111544b

    Article  CAS  Google Scholar 

  17. Mielgo A, Palomo C (2008) α,α-DiarylIprolinol ether: new tools for functionalization of carbonyl compounds. Chem Asian J 3:922–948. https://doi.org/10.1002/asia.200700417

    Article  CAS  PubMed  Google Scholar 

  18. Gu J, Ma Ch LQ, Du W, Chen Y (2014) β,γ-Regioselective inverse-electron-demand aza-Diels–Alder reactions with α,β-unsaturated aldehydes via dienamine catalysis. Org Lett1 6:3986–3989. https://doi.org/10.1021/ol501814p

    Article  CAS  Google Scholar 

  19. Sustmann R (1974) Orbital energy control of cycloaddition reactivity pure. Appl Chem 40:569–593. https://doi.org/10.1351/pac197440040569

    Article  CAS  Google Scholar 

  20. Houk KN (1975) The frontier molecular orbital theory of cycloaddition reactions. Acc Chem Res 8:361–369. https://doi.org/10.1021/ar50095a001

    Article  CAS  Google Scholar 

  21. Han B, Li JL, Ma C, Zhang SJ, Chen Y-C (2008) Organocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-sulfonyl-1-aza-1,3-butadienes and aldehydes. Angew Chem Int Ed 47:9971–9974. https://doi.org/10.1002/anie.200804183

    Article  CAS  Google Scholar 

  22. Han B, He ZQ, Li JL, Li R, Jiang K, Liu TY, Chen YC (2009) Organocatalytic regio- and stereoselective inverse-electron-demand aza-Diels-Alder reaction of alpha,beta-unsaturated aldehydes and N-tosyl-1-aza-1,3-butadienes. Angew Chem Int Ed 48:5474–5477. https://doi.org/10.1002/anie.200902216

    Article  CAS  Google Scholar 

  23. Li JL, Zhou SL, Han B, Wu L, Chen YC (2010) Aminocatalytic asymmetric inverse-electron-demand aza-Diels-Alder reaction of N-Ts-1-aza-1,3-butadienes based on coumarin cores. Chem Commun 46:2665–2667. https://doi.org/10.1039/b925424b

    Article  CAS  Google Scholar 

  24. Xiong XF, Zhang H, Peng J, Chen YC (2011) Direct asymmetric Michael addition of cyclic N-sulfonylimines to α,β-unsaturated aldehydes. Chem Eur J 17:2358–2360. https://doi.org/10.1002/chem.201002592

    Article  CAS  PubMed  Google Scholar 

  25. Kravina AG, Mahatthananchai J, Bode JW (2012) Enantioselective, NHC-catalyzed annulations of trisubstituted enals and cyclic N-sulfonylimines via α,β-unsaturated acyl azoliums. Angew Chem Int Ed 5:9433–9436. https://doi.org/10.1002/anie.201204145

    Article  CAS  Google Scholar 

  26. Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y-C (2013) Trienamines derived from interrupted cyclic 2,5-dienones: remote δ,ε-C=C bond activation for asymmetric inverse-electron-demand aza-Diels-Alder reaction. Angew Chem Int Ed Engl. 52(52):14173–14176. https://doi.org/10.1002/anie.201307460

    Article  CAS  PubMed  Google Scholar 

  27. Ma C, Gu J, Teng B, Zhou Q-Q, Li R, Chen Y-C (2013) 1-Azadienes as regio- and chemoselective dienophiles in aminocatalytic asymmetric Diels-Alder reaction. Org Lett 15:6206–6209. https://doi.org/10.1021/ol4030474

    Article  CAS  PubMed  Google Scholar 

  28. Yu L, Cheng Y, Qi F, Li R, Li P (2017) Organocatalytic regioselectivite, diastereoselective, and enantioselective annulation of cyclic 1-aadiene with γ-nitro ketone via 3,4-cyclization. Org Chem Frontiers 4:1336–1340. https://doi.org/10.1039/C6QO00832A

    Article  CAS  Google Scholar 

  29. Wang KK, Jin T, Huang X, Ouyang Q, Du W, Chen YC (2016) α-Regioselective asymmetric [3 + 2] annulations of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes and mechanism elucidation. Org Lett 18:872–675. https://doi.org/10.1021/acs.orglett.6b00189

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, Liu Y, Yang W, Liu H, Zhou L, Sun Z, Guo H (2016) Chiral phosphine-catalyzed enantioselective [3+2] annulation of Morita–Baylis–Hillman carbonates with cyclic 1-azadienes: synthesis of functionalized cyclopentenes. Adv Synth Catal 358:3517–3521. https://doi.org/10.1002/adsc.201600607

    Article  CAS  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Start-mann RE, Burant JC, Daprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochtersk JI, Petersson GA, Ayala Y, Ui QC, Morokuma K, Malick DK, Rubuck AD, Raghavachari K, Foresman JB, Cioslowski J, Oritz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Comperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challa-combe M, Gill MW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2009) Gaussian 09 revision A.02. Gaussian, Inc, Wallingford CT

    Google Scholar 

  32. Koch W, Holthausen MC (2001) A chemist’s guide to density functional theory2nd edn. Wiley, New York

    Book  Google Scholar 

  33. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  34. Zhao Y, Truhlar GD (2004) Hybrid Meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918. https://doi.org/10.1021/jp048147q

    Article  CAS  Google Scholar 

  35. Hehre WJ, Radom L, PVR S, Pople JA (1986) Ab initio Molecular Orbital Theory. Wiley, New York

    Google Scholar 

  36. Tomasi J, Persico M (1994) Molecular interactions in solution an overview of methods based on continuous distributions of the solvent. Chem Rev 94:2027–2094. https://doi.org/10.1021/cr00031a013

    Article  CAS  Google Scholar 

  37. Cances E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model. J Chem Phys 107:3032–3041. https://doi.org/10.1063/1.474659

    Article  CAS  Google Scholar 

  38. Domingo LR (2014) A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Adv 4:32415–32428. https://doi.org/10.1039/C4RA04280H

    Article  CAS  Google Scholar 

  39. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746. https://doi.org/10.1063/1.449486

    Article  CAS  Google Scholar 

  40. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926. https://doi.org/10.1021/cr00088a005

    Article  CAS  Google Scholar 

  41. Parr RG, Szentpaly LV, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

  42. Parr RG, Pearson RG (1983) Absolute hardness-companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–75162. https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  43. Domingo LR, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions a theoretical study. J Org Chem 73:4615–4624. https://doi.org/10.1021/jo800572a

    Article  CAS  PubMed  Google Scholar 

  44. Domingo LR, Pérez P (2011) The nucleophilicity N index in organic chemistry. Org Biomol Chem 9:7168–7175. https://doi.org/10.1039/c1ob05856h

    Article  CAS  PubMed  Google Scholar 

  45. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:1133–1138. https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  46. Domingo LR, Pérez P, Saez JA (2013) Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic Parr functions. RSC Adv 3:1486–1494. https://doi.org/10.1039/C2RA22886F

    Article  CAS  Google Scholar 

  47. Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523. https://doi.org/10.1021/j100377a021

    Article  CAS  Google Scholar 

  48. Groselj U, Seebach D, Badline DM, Scheeizer WB, Beck AK, Krossing L, Klose P, Hayashi Y, Uchimaru T (2009) Structures of the reactive intermediates in organocatalysis with diarylprolinol ethers. Hel Chem Acta 92:1225–1259. https://doi.org/10.1002/hlca.200900179

    Article  CAS  Google Scholar 

  49. Schmid MB, Zeitler K, Gschwind RM (2011) Distinct conformational preferences of prolinol and prolinol ether enamines in solution revealed by NMR. Chem Sci 2:1793–1803. https://doi.org/10.1039/C1SC00274K

    Article  CAS  Google Scholar 

  50. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728. https://doi.org/10.1146/annurev.pc.46.100195.003413

    Article  CAS  PubMed  Google Scholar 

  51. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154. https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1

    Article  CAS  Google Scholar 

  52. Ess DH, Jones GO, Houk KN (2006) Conceptual, qualitative, and quantitative theories of 1,3-dipolar and Diels–Alder cycloadditions used in synthesis. Adv Synth Catal 348:2337–2361. https://doi.org/10.1002/adsc.200600431

    Article  CAS  Google Scholar 

  53. Domingo LR, Aurell MJ, Pérez P, Contreras R (2002) Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron 58:4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6

    Article  CAS  Google Scholar 

  54. Jaramillo P, Domingo LR, Chamorro E, Pérez PJ (2008) A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. J Mol Struct 865:68–72. https://doi.org/10.1016/j.theochem.2008.06.022

    Article  CAS  Google Scholar 

  55. Chemouri H, Mekellecche SM (2012) Density functional theory study of the regio- and stereoselectivity of diels–alder reactions of 5-aryl-2-pyrones. Int J Quantum Chem 112:2294–2300. https://doi.org/10.1002/qua.23232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dr. Louise S. Price, University College London, UK, for reading the manuscript and providing valuable suggestions.

Disclaimer

We guarantee that this manuscript is original, that has been written by the stated authors and has not been published elsewhere; the manuscript has not been submitted to more than one journal for simultaneous consideration.

We wish to confirm that it has not been published previously (partly or in full). This study is not split up into several parts. We confirm that no data have been fabricated or manipulated. No data, text, or theories by others are presented as if they were the authors own. This manuscript contains no libelous or other unlawful statements and does not contain any materials that violate any personal or proprietary rights of any other person or entity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mina Haghdadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(RAR 11093 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghdadi, M., Abaszadeh, A. & Falahati, Z. DFT study on the regio- and stereoselectivity of the organocatalytic aza-Diels-Alder reaction of crotonaldehyde and cyclic 1-aza-1,3-butadiene. Struct Chem 30, 1831–1842 (2019). https://doi.org/10.1007/s11224-019-01323-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01323-y

Keywords

Navigation