Skip to main content
Log in

Structure, stability and reactivity of neutral bimetallic manganese oxide clusters with CO and NO—a DFT study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this work, the structure, stability and reactivity of neutral bimetallic manganese oxide clusters MnMdO2–4 (Md = Ti, V and Cr) with CO and NO are investigated by means of density functional theory (DFT). The hybrid PBE0 with TZVP basis set is employed to obtain MnMdO2–4 minimum energy structures, reactants, reaction intermediates, transition states and products. Our calculations show that the structural parameters are significantly altered when replacing Mn with Ti, V or Cr. All the clusters considered in this study have higher binding energy per atom, which implies that they are highly stable. Further, these clusters have smaller oxygen dissociation energy than CO2 and NO2. This indicates that the O atom can easily dissociate from these clusters and form CO2 and NO2. Our reactivity study shows that the CO and NO oxidation by MnTiO4 cluster is a favourable reaction. These oxidation reactions are barrierless and thermodynamically and kinetically favourable. Therefore, MnTiO4 can be used as a suitable catalyst for CO and NO oxidation. From this study, it is concluded that the titanium-supported manganese oxide will be a suitable catalyst for the CO and NO oxidation in the condensed phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Fiero GJL (2006) Metal oxides chemistry and applications. Taylor & Francis, London

    Google Scholar 

  2. Liu C, Shi J-W, Gao C, Niu C (2016) Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3: a review. Appl Catal A Gen 522:54–69

    CAS  Google Scholar 

  3. Gao J, Jia C, Zhang L, Wang H, Yang Y, Hung S-F, Hsu Y-Y, Liu B (2016) Tuning chemical bonding of MnO2 through transition-metal doping for enhanced CO oxidation. J Catal 341:82–90

    CAS  Google Scholar 

  4. Keav S, Matam S, Ferri D, Weidenkaff A (2014) Structured perovskite-based catalysts and their application as three-way catalytic converters—a review. Catalysts 4(3):226–255

    Google Scholar 

  5. Trovarelli A, de Leitenburg C, Boaro M, Dolcetti G (1999) The utilization of ceria in industrial catalysis. Catal Today 50(2):353–367

    CAS  Google Scholar 

  6. Ko C, Kerman K, Ramanathan S (2012) Ultra-thin film solid oxide fuel cells utilizing un-doped nanostructured zirconia electrolytes. J Power Sources 213:343–349

    CAS  Google Scholar 

  7. Shao Z, Haile SM (2011) A high-performance cathode for the next generation of solid-oxide fuel cells. Materials for Sustainable Energy, pp 255–258

  8. Zhao C, Wachs IE (2006) Selective oxidation of propylene to acrolein over supported V2O5/Nb2O5 catalysts: an in situ Raman, IR, TPSR and kinetic study. Catal Today 118(3–4):332–343

    CAS  Google Scholar 

  9. Gu D, Jia C-J, Weidenthaler C, Bongard H-J, Spliethoff B, Schmidt W, Schüth F (2015) Highly ordered mesoporous cobalt-containing oxides: structure, catalytic properties, and active sites in oxidation of carbon monoxide. J Am Chem Soc 137(35):11407–11418

    CAS  PubMed  Google Scholar 

  10. Resasco J, Dai S, Graham G, Pan X, Christopher P (2018) Combining in-situ transmission electron microscopy and infrared spectroscopy for understanding dynamic and atomic-scale features of supported metal catalysts. J Phys Chem C 122(44):25143–25157

    CAS  Google Scholar 

  11. Chen X, Wu C, Guo Z (2018) Synthesis of efficient Cu/CoFe2O4 catalysts for low temperature CO oxidation. Catal Lett, pp 1–11

  12. Yang Z, Li H, Liu X, Li P, Yang J, Lee P-H, Shih K (2018) Promotional effect of CuO loading on the catalytic activity and SO2 resistance of MnOx/TiO2 catalyst for simultaneous NO reduction and Hg0 oxidation. Fuel 227:79–88

    CAS  Google Scholar 

  13. Guo Z, Liang Q-H, Yang Z, Liu S, Huang Z-H, Kang F (2016) Modifying porous carbon nanofibers with MnOx–CeO2–Al2O3 mixed oxides for NO catalytic oxidation at room temperature. Catal. Sci. Technol 6(2):422–425

    CAS  Google Scholar 

  14. Wu Z, Tang N, Xiao L, Liu Y, Wang H (2010) MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. J Colloid Interface Sci 352(1):143–148

    CAS  PubMed  Google Scholar 

  15. Wang LN, Li XN, Jiang LX, Yang B, Liu QY, Xu HG, Zheng WJ, He SG (2018) Catalytic CO oxidation by O2 mediated by noble-metal-free cluster anions Cu2VO3–5 . Angew Chem 130(13):3407–3411

    Google Scholar 

  16. Yuan C, Wu HB, Xie Y, Lou XW (2014) Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew Chem Int Ed 53(6):1488–1504

    CAS  Google Scholar 

  17. Sakuma K, Miyajima K, Mafuné F (2013) Oxidation of CO by nickel oxide clusters revealed by post heating. J Phys Chem A 117(16):3260–3265

    CAS  PubMed  Google Scholar 

  18. Acikgoz M, Harrell J, Pavanello M (2018) Seeking a structure–function relationship for γ-Al2O3 surfaces. J Phys Chem C 122(44):25314–25330

    CAS  Google Scholar 

  19. Yuan H, Chen J, Guo Y, Wang H, Hu P (2018) Insight into the superior catalytic activity of MnO2 for low-content NO oxidation at room temperature. J Phys Chem C 122(44):25365–25373

    CAS  Google Scholar 

  20. Tian LH, Zhao YX, Wu XN, Ding XL, He SG, Ma TM (2012) Structures and reactivity of oxygen-rich scandium cluster anions ScO3–5 . ChemPhysChem 13(5):1282–1288

    CAS  PubMed  Google Scholar 

  21. Zhong H, Er D, Wen L (2017) Theoretical study on influence of CaO and MgO on the reduction of FeO by CO. Appl Surf Sci 399:630–637

    CAS  Google Scholar 

  22. Wang Z-C, Yin S, Bernstein ER (2012) Gas-phase neutral binary oxide clusters: distribution, structure, and reactivity toward CO. J. Phys. Chem. Lett 3(17):2415–2419

    CAS  PubMed  Google Scholar 

  23. Kumavat S, Deshpande M (2014) Alkali metal doped nickel oxide clusters: a density functional study. Comput. Theor. Chem 1035:19–27

    CAS  Google Scholar 

  24. Li J, González-Navarrete P, Schlangen M, Schwarz H (2015) Activation of methane and carbon dioxide mediated by transition-metal doped magnesium oxide clusters [MMgO]+/0/− (M = Sc–Zn). Chem Eur J 21(21):7780–7789

    CAS  PubMed  Google Scholar 

  25. Fang H-L, Xu L, Li J, Wang B, Zhang Y-F, Huang X (2015) Catalytic oxidation of CO by N2O on neutral Y2MO5 (M = Y, Al) clusters: a density functional theory study. RSC Adv 5(93):76651–76659

    CAS  Google Scholar 

  26. Liu H, Liew KM, Pan C (2014) The role of F-dopants in adsorption of gases on anatase TiO2 (001) surface: a first-principles study. RSC Adv 4(68):35928–35942

    CAS  Google Scholar 

  27. Xiong G, Yang C, Zhu W, Xiao H (2016) Density functional theory study of high-energy metal (Al, Mg, Ti, and Zr)/CuO composites. RSC Adv 6(93):90206–90211

    CAS  Google Scholar 

  28. Johnson GE, Tyo EC, Castleman Jr AW (2008) Oxidation of CO by aluminum oxide cluster ions in the gas phase. J Phys Chem A 112(21):4732–4735

    CAS  PubMed  Google Scholar 

  29. Xie Y, Dong F, Heinbuch S, Rocca JJ, Bernstein ER (2010) Oxidation reactions on neutral cobalt oxide clusters: experimental and theoretical studies. Phys Chem Chem Phys 12(4):947–959

    CAS  PubMed  Google Scholar 

  30. Matsuda Y, Bernstein ER (2005) Identification, structure, and spectroscopy of neutral vanadium oxide clusters. J Phys Chem A 109(17):3803–3811

    CAS  PubMed  Google Scholar 

  31. Matsuda Y, Bernstein ER (2005) On the titanium oxide neutral cluster distribution in the gas phase: detection through 118 nm single-photon and 193 nm multiphoton ionization. J Phys Chem A 109(2):314–319

    CAS  PubMed  Google Scholar 

  32. Yin S, Bernstein ER (2012) Gas phase chemistry of neutral metal clusters: distribution, reactivity and catalysis. Int J Mass Spectrom 321:49–65

    Google Scholar 

  33. Wang Z-C, Yin S, Bernstein ER (2013) Catalytic oxidation of CO by N2O conducted via the neutral oxide cluster couple VO2/VO3. Phys Chem Chem Phys 15(25):10429–10434

    CAS  PubMed  Google Scholar 

  34. Yin S, Wang Z, Bernstein ER (2013) O-atom transport catalysis by neutral manganese oxide clusters in the gas phase: reactions with CO, C2H4, NO2, and O2. J Chem Phys 139(8):084307

    PubMed  Google Scholar 

  35. Wang Z-C, Yin S, Bernstein ER (2013) Generation and reactivity of putative support systems, Ce-Al neutral binary oxide nanoclusters: CO oxidation and C–H bond activation. J Chem Phys 139(19):194313

    PubMed  Google Scholar 

  36. Yin S, Bernstein ER (2016) Ethylene C–H bond activation by neutral Mn2O5 clusters under visible light irradiation. J. Phys. Chem. Lett 7(9):1709–1716

    CAS  PubMed  Google Scholar 

  37. Iyemperumal SK, Pham TD, Bauer J, Deskins NA (2018) Quantifying support interactions and reactivity trends of single metal atom catalysts over TiO2. J Phys Chem C 122(44):25274–25289

    CAS  Google Scholar 

  38. McFarland EW, Metiu H (2013) Catalysis by doped oxides. Chem Rev 113(6):4391–4427

    CAS  PubMed  Google Scholar 

  39. Tosoni S, Pacchioni G (2019) Oxide-supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11:73–89

    CAS  Google Scholar 

  40. Thang HV, Pacchioni G (2018) CO oxidation promoted by a Pt4/TiO2 catalyst: role of lattice oxygen at the metal/oxide interface. Catal Lett, pp 1–9

  41. He H, Chen J, Zhang D, Li F, Chen X, Chen Y, Bian L, Wang Q, Duan P, Wen Z (2018) Modulating the electrocatalytic performance of palladium with the electronic metal–support interaction: a case study on oxygen evolution reaction. ACS Catal 8(7):6617–6626

    CAS  Google Scholar 

  42. Alizadeh M, Hosseini SA, Nouri SMM, Khalighi Z, Delfarah B (2018) Low-cost nanostructured Fe2O3-based composite catalysts synthesized by mechanical milling for CO oxidation reaction. Chem Eng Commun 205(8):1041–1049

    CAS  Google Scholar 

  43. Alphonse P (2016) Co–Mn-oxide spinel catalysts for CO and propane oxidation at mild temperature. Appl Catal B Environ 180:715–725

    Google Scholar 

  44. Wischert R, Laurent P, Copéret C, Fo D, Sautet P (2012) γ-Alumina: the essential and unexpected role of water for the structure, stability, and reactivity of “defect” sites. J Am Chem Soc 134(35):14430–14449

    CAS  PubMed  Google Scholar 

  45. Zhao Y-X, Li Z-Y, Yang Y, He S-G (2018) Methane activation by gas phase atomic clusters. Acc Chem Res 51(11):2603–2610

    CAS  PubMed  Google Scholar 

  46. Nößler M, Mitrić R, Bonačić-Koutecký V, Johnson GE, Tyo EC, Castleman Jr AW (2010) Generation of oxygen radical centers in binary neutral metal oxide clusters for catalytic oxidation reactions. Angew Chem Int Ed 49(2):407–410

    Google Scholar 

  47. Wang X, Lan Z, Zhang K, Chen J, Jiang L, Wang R (2017) Structure–activity relationships of AMn2O4 (A = Cu and Co) spinels in selective catalytic reduction of NOx: experimental and theoretical study. J Phys Chem C 121(6):3339–3349

    CAS  Google Scholar 

  48. Chen J-J, Yang Y, Zhao Y-X, He S-G (2018) Vacuum ultraviolet ionization-induced reaction of neutral Au2Al2O3 clusters with methane. J Phys Chem C 122(11):6159–6165

    CAS  Google Scholar 

  49. Marks JH, Ward TB, Duncan MA (2018) Photodissociation of manganese oxide cluster cations. J Phys Chem A 122(13):3383–3390

    CAS  PubMed  Google Scholar 

  50. Han Y-F, Chen F, Zhong Z-Y, Ramesh K, Widjaja E, Chen L-W (2006) Synthesis and characterization of Mn3O4 and Mn2O3 nanocrystals on SBA-15: novel combustion catalysts at low reaction temperatures. Catal Commun 7(10):739–744

    CAS  Google Scholar 

  51. Han Y-F, Chen F, Zhong Z, Ramesh K, Chen L, Widjaja E (2006) Controlled synthesis, characterization, and catalytic properties of Mn2O3 and Mn3O4 nanoparticles supported on mesoporous silica SBA-15. J Phys Chem B 110(48):24450–24456

    CAS  PubMed  Google Scholar 

  52. Frey K, Iablokov V, Sáfrán G, Osán J, Sajó I, Szukiewicz R, Chenakin S, Kruse N (2012) Nanostructured MnOx as highly active catalyst for CO oxidation. J Catal 287:30–36

    CAS  Google Scholar 

  53. Ching S, Kriz DA, Luthy KM, Njagi EC, Suib SL (2011) Self-assembly of manganese oxide nanoparticles and hollow spheres. Catalytic activity in carbon monoxide oxidation. Chem Commun 47(29):8286–8288

    CAS  Google Scholar 

  54. Xi Y, Ren J-C (2016) Design of a CO oxidation catalyst based on two-dimensional MnO2. J Phys Chem C 120(42):24302–24306

    CAS  Google Scholar 

  55. Li K, Chen J, Peng Y, Lin W, Yan T, Li J (2017) The relationship between surface open cells of α-MnO2 and CO oxidation ability from a surface point of view. J Mater Chem A 5(39):20911–20921

    CAS  Google Scholar 

  56. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110(13):6158–6170

    CAS  Google Scholar 

  57. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835

    Google Scholar 

  58. Nößler M, Mitrić R, Bonačić-Koutecký V (2012) Binary neutral metal oxide clusters with oxygen radical centers for catalytic oxidation reactions: from cluster models toward surfaces. J Phys Chem C 116(21):11570–11574

    Google Scholar 

  59. Lousada CM, Johansson AJ, Brinck T, Jonsson M (2013) Reactivity of metal oxide clusters with hydrogen peroxide and water—a DFT study evaluating the performance of different exchange–correlation functionals. Phys Chem Chem Phys 15(15):5539–5552

    CAS  PubMed  Google Scholar 

  60. Frisch M J TGW, Schlegel H B, Scuseria G, E RMA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji, H CM, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg, J L HM, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima, T HY, Kitao O, Nakai H, Vreven T, Montgomery J A, Peralta J E, Ogliaro, F BM, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi, R NJ, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi, J CM, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo, C JJ, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli, C OJW, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador, P DJJ, Dapprich S, Daniels A D, Farkas, Foresman J B, Ortiz, J V CJAFDJ (2009) Gaussian 09, Revision B.01. Wallingford CT

  61. Wang Y, Gong X, Wang J (2010) Comparative DFT study of structure and magnetism of TMnOm (TM = Sc–Mn, n = 1–2, m = 1–6) clusters. Phys Chem Chem Phys 12(10):2471–2477

    CAS  PubMed  Google Scholar 

  62. Valiev M, Bylaska EJ, Govind N, Kowalski K, Straatsma TP, Van Dam HJJ, Wang D, Nieplocha J, Apra E, Windus TL (2010) NWChem: a comprehensive and scalable open-source solution for large scale molecular simulations. Comput Phys Commun 181(9):1477–1489

    CAS  Google Scholar 

  63. Li L, Qu L, Cheng J, Li J, Hao Z (2009) Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. Appl Catal B Environ 88(1–2):224–231

    CAS  Google Scholar 

  64. Li L, Shen Q, Cheng J, Hao Z (2010) Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. Appl Catal B Environ 93(3–4):259–266

    CAS  Google Scholar 

  65. Yuan H, Chen J, Wang H, Hu P (2018) Activity trend for low-concentration NO oxidation at room temperature on rutile-type metal oxides. ACS Catal 8(11):10864–10870

    CAS  Google Scholar 

Download references

Acknowledgements

The authors (S.S. and S.P.) are thankful to the Science and Engineering Research Board, Govt. of India, for the financial support in the form of the project (YSS/2015/001311).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Selvarengan Paranthaman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

The ground state structures of MnMdO2-4 (Md = Al, Si, Sc–Zn) and the two most stable structures of MnMdO4 (Md = Ti, V and Cr) are shown in supporting file (Figs. S1S4).

ESM 1

(DOCX 2499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sampathkumar, S., Subramaniam, V. & Paranthaman, S. Structure, stability and reactivity of neutral bimetallic manganese oxide clusters with CO and NO—a DFT study. Struct Chem 30, 2109–2122 (2019). https://doi.org/10.1007/s11224-019-01319-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-019-01319-8

Keywords

Navigation