Skip to main content
Log in

Structures, bonding and reactivity of iron and manganese high-valent metal-oxo complexes: A computational investigation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Iron and manganese ions with terminal oxo and hydroxo ligands are discovered as key intermediates in several synthetic and biochemical catalytic cycles. Since many of these species possess vigorous catalytic abilities, they are extremely transient in nature and experiments which probe the structure and bonding on such elusive species are still rare. We present here comprehensive computational studies on eight iron and manganese oxo and hydroxo (FeIII/IV/V-O, FeIII-OH and MnIII/IV/V-O, MnIII-OH) species using dispersion corrected (B3LYP-D2) density functional method. By computing all the possible spin states for these eight species, we set out to determine the ground state S value of these species; and later on employing MO analysis, we have analysed the bonding aspects which contribute to the high reactivity of these species. Direct structural comparison to iron and manganese-oxo species are made and the observed similarity and differences among them are attributed to the intricate metal–oxygen bonding. By thoroughly probing the bonding in all these species, their reactivity towards common chemical reactions such as C–H activation and oxygen atom transfer are discussed.

In this work, we present comprehensive computational studies on iron and manganese high-valent oxo and hydroxo species using dispersion corrected (B3LYP-D2) density functional method. By thoroughly probing the bonding in all these species, their reactivity towards common chemical reactions such as C-H activation and oxygen atom transfer are commented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. (a) Yachandra V K, Sauer K and Klein M P 1996 Chem. Rev. 96 2927; (b) Tommos C and Babcock G T 1998 Acc. Chem. Res. 31 18 and references therein; (c) Pecoraro V L, Baldwin M J, Caudle M T, Hsieh W Y and Law N A 1998 Pure Appl. Chem. 70 925; (d) Tang X S, Ball J A, Randall D W, Force D A, Diner B A and Britt R D 1996 J. Am. Chem. Soc. 118 7638; (e) Gilchrist Jr. M L, Ball J A, Randall D W and Britt R D 1995 Proc. Natl. Acad. Sci. 92 9545

  2. Nicks R J, Ray G B, Fish K M, Spiro T G and Groves J T 1991 J. Am. Chem. Soc. 113 1838

  3. (a) Pecoraro V L, Baldwin M J and Gelasco A 1994 Chem. Rev. 94 807; (b) Dismukes G C 1996 Chem. Rev. 96 2909

  4. Burger R M 2000 Struct. Bond. 97 287

  5. Karlsson A, Parales J V, Parales R E, Gibson D T, Eklund H and Ramaswamy S 2003 Science 299 1039

  6. (a) Ortiz de Montellano P R Cytochrome P450: Structure, Mechanism, and Biochemistry, 3rd ed. New York: Kluwer 2005; (b) Abu-Omar M M, Loaiza A and Hontzeas N 2005 Chem. Rev. 105 2227; (c) Krebs C, Fujimori D G, Walsh C T and Bollinger Jr. J M 2007 Acc. Chem. Res. 40 484; (d) Green M T 2009 Curr. Opin. Chem. Biol. 13 84 (e) Ortiz de Montellano P R 2010 Chem. Rev. 110 932; (f) Shaik S, Lai W, Chen H and Wang Y. 2010 Acc. Chem. Res. 43 1154

  7. (a) Lee D and Lippard S J In Comprehensive Coordination Chemistry II; From Biology to Nanotechnology; Vol. 8, p 309 Oxford: Elsevier Ltd. 2004; (b) Du Bois J, Mizoguchi T J and Lippard S J 2000 Coord. Chem. Rev. 200-202 443; (c) Kurtz Jr. D M 1990 Chem. Rev. 90 585

  8. (a) Makhlynets O V, Das P, Taktak P, Flook M, Mas-Balleste R, Rybak-Akimova E V, Que Jr. L 2009 Chem. Eur. J. 15 13171; (b) Makhlynets O V and Rybak-Akimova E V 2010 Chem. Eur. J. 16 13995; (c) Chen K, Costas M and Que Jr. L 2002 J. Chem. Soc. Dalton Trans. 672: (d) Park M J, Lee J, Suh Y, Kim J and Nam W 2006 J. Am. Chem. Soc. 128 2630

  9. (a) MacBeth C E, Golombek A P, Young V G Jr, Yang C, Kuczera K, Hendrich M P and Borovik, A S 2000 Science 289 938; (b) Lacy D C, Gupta R, Stone K L, Greaves J, Ziller J W, Hendrich M P and Borovik A S 2010 J. Am. Chem. Soc. 132 12188; (c) Shook R L and Borovik A S 2008 Chem. Commun. 6095

  10. (a) Rohde J-U, In J-H, Lim M H, Brennessel W W, Bukowski M R, Stubna A, Münck E, Nam W and Que Jr. L 2003 Science 299 1037; (b) de Oliveira F T, Chanda A, Banerjee D, Shan X, Mondal S, Que Jr. L, Bominaar E L, Münck E and Collins T J 2007 Science 315 835; (c) Lyakin O Y, Bryliakov K P, Britovsek G J P and Talsi E P 2009 J. Am. Chem. Soc. 131 10798

  11. (a) Srinvasan K, Michaud P and Kochi J K 1986 J. Am. Chem. Soc. 108 2309; (b) Zhang W, Loebach J L, Wilson S R and Jacobsen R N 1990 J. Am. Chem. Soc. 112 2801; (c) Paluki M, Finney N S, Pospisil P J, Guler M L, Ishida T and Jacobsen E N 1998 J. Am. Chem. Soc. 120 948

  12. (a) Metallo-porphyrins in catalytic oxidations, ed. Sheldon R A Ed.; M. New York: Dekker 1994; (b) Nam W and Valentine J S 1993 J. Am. Chem. Soc. 115 1772; (c) Groves J T, Lee J and Marla S S 1997 J. Am. Chem. Soc. 119 6269; (d) Jin N and Groves J T 1999 J. Am. Chem. Soc. 121 2923; (e) Jaccob M, Ansari A, Pandey B and Rajaraman G 2013 Dalton Trans. (doi: 10.1039/C3DT52290C)

  13. (a) Shirin Z, Hammes B S, Young Jr. V G and A S Borovik 2000 J. Am. Chem. Soc. 122 1836; (b) Gupta R, MacBeth C E, Young V G, Jr. and Borovik A S 2002 J. Am. Chem. Soc. 124 7; (c) Gupta R and Brovik A S 2003 J. Am. Chem. Soc. 125 13234

  14. Parsell T H, Behan R K, Green M T, Hendrich M P and Borovik A S 2006 J. Am. Chem. Soc. 128 8728

  15. (a) Shook R L, Gunderson W A, Greaves J, Ziller J W, Hendrich M P and Borovik A S 2008 J. Am. Chem. Soc. 130 8888; (b) Shook R L, Peterson S M, Greaves J, Moore C, Rheingold A L and Borovik, A S 2011 J. Am. Chem. Soc. 133 5810

  16. (a) Ansari A, Kaushik A and Rajaraman G 2013 J. Am. Chem. Soc. 135 4235; (b) Jaccob M and Rajaraman G 2012 Dalton Trans. 41 10430; (c) Dey A and Ghosh A 2002 J. Am. Chem. Soc. 124 3206 (d) Bassan A, Blomberg M R A, Siegbahn P E M and Que Jr. L 2002 J. Am. Chem. Soc. 124 11056

  17. MacBeth C E, Gupta R, Mitchell-Koch K R, Young Jr. V G, Lushington G H, Thompson W H, Hendrich M P and Borovik A S 2004 J. Am. Chem. Soc. 126 2556

  18. (a) Seo M S, Kim N H, Cho K-B, So J E, Park S K, Clemancey M, Garcia-Serres R, Latour J-M, Shaik S and Nam W 2011 Chem. Sci. 2 1039; (b) Isabella H-K, Mück-Lichtenfeld C and Grimme S 2009 Croat. Chem. Acta 82 115; (c) Lim M H, Rohde J-U, Stubna A, Bukowski M R, Costas M, Ho R Y N, Münck E, Nam W and Que L Jr 2003 Proc. Natl. Acad. Sci. U.S.A. 100 3665; (d) Rohde J-U, Stubna A, Bominaar E L, Münck E, Nam W and Que Jr. L 2006 Inorg. Chem. 45 6435

  19. (a) Bassan A, Blomberg M R A, Siegbahn P E M and Que Jr. L 2005 Chem. Eur. J. 11 692; (b) Bassan A, Blomberg M R A and Siegbahn P E M 2003 Chem. Eur. J. 9 4055

  20. (a) Parsell T H, Yang M-Y and Brovik A S 2009 J. Am. Chem. Soc. 131 2762; (b) Gupta R, MacBeth C E, Young V G and Borovik A S 2002 J. Am. Chem. Soc. 124 1136

  21. Gupta R, Taguchi T, Borovik A S and Hendrich M P 2013 Inorg. Chem. 52 12568

  22. Gaussian 09, Revision A.1, Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov, A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda, Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J, Gaussian, Inc. Wallingford CT 2009

  23. Grimme, S J 2006 Comput. Chem. 27 1787

  24. (a) Dunning T H, Jr., Hay P J In Modern theoretical chemistry, ed. Schaefer, H F, III, New York: Plenum 1976 Vol. 3, p 1; (b) Hay P J and Wadt W R 1985 J. Chem. Phys. 82 270 (c) Wadt W R and Hay P J 1985 J. Chem. Phys. 82 284; (d) Hay P J and Wadt W R 1985 J. Chem. Phys. 82 299

  25. Ditchfield R, Hehre W J and Pople J A 1971 J. Chem. Phys. 54 724

  26. (a) Schäfer A, Horn H and Ahlrichs R 1992 J. Chem. Phys. 97 2571; (b) Schäfer C, Huber C and Ahlrichs R 1994 J. Chem. Phys. 100 5829

  27. (a) Fluckiger P, Luthi H P, Portmann S and Weber J Molekel 4.3 Swiss Center for Scientific Computing: Manno, Switzerland, 2000; (b) Portmann S and Lüthi, H P 2000 Chimia. 54 766

  28. Mennucci B 2012 Comput Mol Sci. 2 386

  29. Feig A L and Lippard S J 1994 Chem. Rev. 94 759

  30. (a) Ye S and Neese F 2011 Proc. Natl. Acad. Sci. USA 108 1228; (b) de Visser S P, Rohdeb R-U, Lee Y-M, Cho J and Nam W 2013 Coord. Chem. Rev. 257 381

  31. (a) Nishida Y, Morimoto Y, Lee, Y-M, Nam W and Fukuzumi S 2013 Inorg. Chem. 52 3094; (b) Wang D, Zhang Mo, Buhlmann P and Que Jr. L 2010 J. Am. Chem. Soc. 132 7638

  32. (a) de Visser S P, Oh K, Han A-R and Nam W 2007 Inorg. Chem. 46 4632; (b) Olsson E, Mertinez A, Teigen K and Jensen V R 2011 Eur. J. Inorg. Chem. 2720

  33. Taguchi T, Gupta R, Lassalle-Kaiser B, Boyce D W Yachandra V K, Tolman W B, Yano J, Hendrich M P and Borovik A S 2012 J. Am. Chem. Soc. 134 1996

Download references

Acknowledgements

GR thanks for financial support from the Government of India through the Department of Science and Technology (SR/S1/IC-41/2010; SR/NM/NS-1119/2011) and Indian Institute of Technology, Bombay to access the high performance computing facility. BP thanks UGC New Delhi for JRF fellowship, AA thanks CSIR, New Delhi for JRF fellowship and NV thanks DST for FAST TRACK fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GOPALAN RAJARAMAN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

PANDEY, B., ANSARI, A., VYAS, N. et al. Structures, bonding and reactivity of iron and manganese high-valent metal-oxo complexes: A computational investigation. J Chem Sci 127, 343–352 (2015). https://doi.org/10.1007/s12039-015-0770-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0770-9

Keywords

Navigation