Skip to main content
Log in

Computational insights into the electronic structure of TCNDQ and TCNP: the effect of Si substitution

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Tetracyanodiphenoquinodimethane (TCNDQ) and tetracyanopyrenoquinodimethane (TCNP) are larger cyanocarbons related to tetracyanoethylene (TCNE) and tetracyanoquinodimethane (TCNQ). In contrast to TCNE and TCNQ, there are limited studies detailing the electronic structure of TCNDQ and TCNP. In this work, we provide structural characterization and adiabatic electron affinities (AEAs) of TCNDQ and TCNP. The isovalent substitution strategy (swapping C for Si) discussed previously by our group is applied, and the effect of Si substitution on the potential energy surfaces and AEAs of the parent compounds is assessed. Si substitution enhances the AEAs and stabilizes the triplet diradical ground state of both compounds. These findings provide missing information regarding the electronic structure of TCNDQ and TCNP and further demonstrate the effectiveness of the isovalent substitution strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Fig. 7
Fig. 8
Scheme 5

Similar content being viewed by others

Notes

  1. The deviation in calculated ESR constants is available in SI-Tables 13 and 14

  2. Imaginary frequencies could not be removed in these cases. They lead back to the twisted D2 structure described

  3. M06-L increases in the order BS4 < BS1 < BS2 < BS3

  4. The DIA Values are computed as the difference between the average double bond DI and average single bond DI. This is done so that DIA carries the same sign as BLA

  5. M06/BS2 is CS symmetry but displays no pyramidalization

  6. Further attempts to calculate the energy of the OSS by using the triplet wavefunction and permuting the orbitals resulted in the CSS solution being obtained.

References

  1. Thiele J, Balhorn H (1904). Chem Ber 37:1756–1758

    Article  Google Scholar 

  2. Tschitchitbabin AE (1907). Chem. Ber. 40:1810–1819

    Article  Google Scholar 

  3. Ravat P, Baumgarten M (2014). Phys Chem Chem Phys 17(2):983–991

    Article  CAS  PubMed  Google Scholar 

  4. Kamada K, Ohta K, Kubo T, Shimizu A, Morita Y, Nakasuji K, Kishi R, Ohta S, Furukawa SI, Takahasi H, Nakano M (2007). Angew Chem Int Ed 46:3544–3546

    Article  CAS  Google Scholar 

  5. Chikamatsu M, Mikami T, Chisaka J, Yoshida Y, Azumi R, Yase K (2007). Appl Phys Lett 91:043506

    Article  CAS  Google Scholar 

  6. Son Y, Cohen ML, Louie SG (2006). Phys Rev Lett 97:216803

    Article  CAS  PubMed  Google Scholar 

  7. Morita Y, Nishida S, Murata T, Moriguchi M, Ueda A, Satoh M, Arifuku K, Soto K, Takui T (2011). Nat Mater 10:947–951

    Article  CAS  PubMed  Google Scholar 

  8. Long RE, Sparks RA, Trueblood KN (1965). Acta Cryst 18:932

    Article  CAS  Google Scholar 

  9. Hoekstra A, Spoelder T, Vos A (1972). Acta Cryst B28:14

    Article  Google Scholar 

  10. Kistenmacher TJ, Phillips TE, Cowan DO (1974). Acta Cryst B30:763

    Article  Google Scholar 

  11. Miller JS, Zhang JH, Reiff WM, Dixon DA, Preston LD, Reis Jr AH, Gebert E, Extine M, Troup J, Epstein AJ, Ward, and M. D (1987). J Phys Chem 91:4344–4360

    Article  CAS  Google Scholar 

  12. Milian B, Pou-Amerigo R, Viruela R, Orti EJ (2004). Mol Str (Theochem) 709:97–102

    Article  CAS  Google Scholar 

  13. Milian B, Pou-Amerigo R, Viruela R, Orti E (2004). Chem Phys Lett 391:148–151

    Article  CAS  Google Scholar 

  14. Maley SM, Esau C, Mawhinney RC (2018). Struct Chem 30(1):289–301

  15. Zhu G-Z, Wang L-S (2015). J Chem Phys 143:221102

    Article  CAS  PubMed  Google Scholar 

  16. Addison AW, Dalal NS, Hoyano Y, Huizinga S, Weiler L (1977). Can J Chem 55:4191–4199

    Article  CAS  Google Scholar 

  17. Maxfield M, Bloch AN, Cowan DOJ (1985). Org Chem 50(11):1789–1796

    Article  CAS  Google Scholar 

  18. Gerson F, Heckendorn R, Cowan DO, Kini AM, Maxfield M (1983). J Am Chem Soc 105(24):7017–7023

    Article  CAS  Google Scholar 

  19. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian. Inc., Wallingford CT

    Google Scholar 

  20. Becke AD (1988). Phys. Rev. A. 38:3098–3100

    Article  CAS  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988). Phys. Rev. B 37:785–789

    Article  CAS  Google Scholar 

  22. Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  23. Zhao Y, Truhlar DG (2008). Theor Chem Acct 120:215

    Article  CAS  Google Scholar 

  24. Becke ADJ (1993). Chem Phys 98:5648–5652

    CAS  Google Scholar 

  25. Adamo C, Barone VJ (1999). Chem Phys 110:6158–6159

    CAS  Google Scholar 

  26. Yanai T, Tew D, Handy N (2004). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  27. Baurenschmidt R, Ahlrics R (1996). J Chem Phys 104:9047

    Article  Google Scholar 

  28. AIMAll (Version 17.11.14), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2017 (aim.tkgristmill.com)

  29. Bader RFW Atoms in Molecules: a quantum theory. Oxford University press, New York. USA

  30. Grein, F. J. Mol. Str. (Theochem), 2003, 624, 23–28

  31. Choi J, Cho DW, Tojo S, Fujitsuka M, Majima T (2015). J Phys Chem A 119:851–856

    Article  CAS  PubMed  Google Scholar 

  32. Campanelli AR, Domenciano A (2013). Struct Chem 24:867–876

    Article  CAS  Google Scholar 

  33. Casado J, Burrezo PM, Zafra JL, Navattete JTL (2017). Angew Chem Int Ed 56(9):2250–2259

    Article  CAS  Google Scholar 

  34. Chowdhury S, Kebarle P (1986). J Am Chem Soc 108:5423

    Google Scholar 

  35. Morinaga M, Nogami T, Mikawa H (1979). Bull Chem Soc Japan 52(12):3739–3740

    Article  CAS  Google Scholar 

  36. Fukuda K, Nozawa T, Yotsuyanagi H, Ichinohe M, Sekiguchi A, Masayoshi N (2015). J Phys Chem C 119(2):1188–1193

    Article  CAS  Google Scholar 

  37. Tang X, Hu Y, Jia W, Pan R, Deng J, Deng J, He Z, Xiong Z (2018). ACS Appl Mater Interfaces 10(2):1948–1956

    Article  CAS  PubMed  Google Scholar 

  38. Wakasa M, Yago T, Sonoda Y, Katoh R (2018). Comm Chem 1(9)

Download references

Acknowledgements

The authors would like to thank SHARCNET and Compute Canada for computational resources.

Funding

SMM was supported by a grant through Indigenous and Northern Affairs Canada (INAC) Post-Secondary Student Support Program. Finally, the authors was supported by Lakehead University and the Natural Sciences and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert C Mawhinney.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3242 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maley, S.M., Mawhinney, R.C. Computational insights into the electronic structure of TCNDQ and TCNP: the effect of Si substitution. Struct Chem 30, 1873–1885 (2019). https://doi.org/10.1007/s11224-018-1265-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1265-3

Keywords

Navigation