Skip to main content
Log in

Influence of heteroelement on dipole and quadrupole moments of a series of three-membered rings containing a second, third, fourth, or fifth-row atom: a theoretical investigation

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The influence of heteroelements on the molecular dipole and traceless quadrupole moments of a series of twenty-two three-membered rings (1–22) was theoretically estimated employing levels of theory such as MP2, CCSD, and PBE1PBE in combination with standard Pople’s basis set. To an accurate evaluation of these properties, additional calculations on the optimized geometries were performed using the correlation-consistent cc-pVDZ and aug-cc-pVDZ basis sets on the three mentioned methods. In particular, the dipole and quadrupole moments from MP2 and CCSD approaches are comparable to each other for the studied molecules, while PBE1PBE calculations were significantly deviated compared to MP2 and CCSD levels. High level of theory and large basis sets seemed to be needed to obtain reliable electrical properties in the heterocycles containing heavy atoms. Results demonstrated that the dipole and quadrupole moments are strongly determined by the nature of the heteroatom into ring skeleton, and its magnitude depends on the polarity of C-heteroelement bond. Dipole moment of these molecules 1–22 showed a clear increase with the increase of electronegativity and the atomic size of heteroatom into ring skeleton. Then, high relative dipole moment was found for three-membered rings containing II, IIIA, VIA, and VIIA elements, which is associated to the high polarization of the C-heteroatom bond. A similar behavior was observed for the quadrupole moments of these three-membered rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gray CG, Gubbins KE (1984) Theory of molecular fluids, vol 1. Oxford University Press, Oxford

    Google Scholar 

  2. Buckingham AD (1978) In: Pullman B (ed) Intermolecular interactions: from diatomics to biopolymers. Wiley, New York, p 1

    Google Scholar 

  3. Maitland GC, Rigby M, Smith EB, Wakeham WA (1981) Intermolecular forces. Oxford University Press, Oxford

    Google Scholar 

  4. Stone AJ (1996) The theory of intermolecular forces. Clarendon Press, Oxford

    Google Scholar 

  5. Buckingham AD (1967) Adv Chem Phys 12:107

    CAS  Google Scholar 

  6. Lykke KR, Neumark DM, Andersen T, Trapa VJ, Lineberger WC (1987) J Chem Phys 87:6842. https://doi.org/10.1063/1.453379

    Article  CAS  Google Scholar 

  7. Wang XB, Wang LS (1999) Nature 400:245

    Article  CAS  Google Scholar 

  8. Wang XB, Ding CF, Wang LS (1999) Chem Phys Lett 307:391. https://doi.org/10.1016/S0009-2614(99)00543-6

    Article  CAS  Google Scholar 

  9. Boltalina OV, Hvelplund P, Jorgensen TJD, Larsen MC, Larsson MO, Sharoitchenko DA (2000) Phys Rev A 62:023202. https://doi.org/10.1103/PhysRevA.62.023202

    Article  Google Scholar 

  10. Larsson MO, Hvelplund P, Larsen MC, Shen H, Cederquist H, Schmidt HT (1998) Int J Mass Spectrom Ion Process 177:51

    Article  CAS  Google Scholar 

  11. Garau C, Frontera A, Quinonero D, Ballester P, Costa A, Deya PM (2003) Chem Phys Chem 4:1344. https://doi.org/10.1002/cphc.200300886

    Article  CAS  PubMed  Google Scholar 

  12. Ma JC, Dougherty DA (1997) Chem Rev 97:1303. https://doi.org/10.1021/cr9603744

    Article  CAS  PubMed  Google Scholar 

  13. Abascal JLF, Vega C (2007) J Phys Chem 111:15811. https://doi.org/10.1021/jp074418w

    Article  CAS  Google Scholar 

  14. Luhmer M, Bartik K, Dajaegere A, Bovy P, Reisse J (1994) Bull Soc Chim Fr 131:603. https://doi.org/10.1002/cber.19931260419

    Article  CAS  Google Scholar 

  15. Honig B, Nicholls A (1995) Science 268:1144. https://doi.org/10.1126/science.7761829

    Article  CAS  PubMed  Google Scholar 

  16. Magnasco V, Costa C, Figari G (1989) Chem Phys Lett 160:469. https://doi.org/10.1016/0009-2614(89)80049-1

    Article  CAS  Google Scholar 

  17. Buckingham AD, Fowler PW (1988) J Mol Struct 189:203. https://doi.org/10.1016/0022-2860(88)80225-4

    Article  CAS  Google Scholar 

  18. Gordy W, Cook RL (1984) Microwave molecular spectra. Wiley, New York

    Google Scholar 

  19. McClellan AL (1989) Tables of experimental dipole moments, vol 3. Rahara Enterprises, El Cerrito

    Google Scholar 

  20. DeLeon RL, Muenter JS (1984) J Chem Phys 80:3992. https://doi.org/10.1063/1.447270

    Article  CAS  Google Scholar 

  21. Gierszal S, Galica J, MisKuzminnska E (2003) Phys Scr 67:525. https://doi.org/10.1238/Physica.Regular.069a00403

    Article  CAS  Google Scholar 

  22. Ritchie GLD (2004) Phys Scr 69:403. https://doi.org/10.1238/Physica.Regular.069a00403

    Article  CAS  Google Scholar 

  23. Poll JD, Wolniewicz L (1978) J Chern Phys 68:3053. https://doi.org/10.1063/1.436171

    Article  CAS  Google Scholar 

  24. Flygare WH, Benson RC (1971) Mol Phys 20:225. https://doi.org/10.1080/00268977100100221

    Article  CAS  Google Scholar 

  25. Cohen ER, Birnbaum G (1975) J Chem Phys 62:3807. https://doi.org/10.1063/1.430932

    Article  Google Scholar 

  26. Ritchie GLD (1997) In: Clary DC, Orr B (eds) Optical, electric and magnetic properties of molecules. Elsevier, Amsterdam

    Google Scholar 

  27. Buckingham AD (1959) J Chem Phys 30:1580. https://doi.org/10.1063/1.1730242

    Article  CAS  Google Scholar 

  28. Buckingham AD, Longuet-Higgins HC (1968) Mol Phys 14:63. https://doi.org/10.1080/00268976800100051

    Article  CAS  Google Scholar 

  29. Buckingham AD, Disch RL, Dunmur DA (1968) J Am Chem Soc 90:3104. https://doi.org/10.1021/ja01014a022

    Article  CAS  Google Scholar 

  30. Sutter DH, Flygare WH (1976) Top Curr Chem 63:89

    Article  CAS  Google Scholar 

  31. Spackman MA (1992) Chem Rev 92:1769. https://doi.org/10.1021/cr00016a005

    Article  CAS  Google Scholar 

  32. Aynacioglu AS, Heumann S, Von Oppen G (1990) Phys Rev Lett 64:1879. https://doi.org/10.1103/PhysRevLett.64.1879

    Article  CAS  PubMed  Google Scholar 

  33. Lide DR (1998) Chapter 9) Handbook of chemistry and physics79th edn. CRC Press, New York, pp 42–50

    Google Scholar 

  34. Graham C, Imrie DA, Raab RE (1998) Mol Phys 93:49

    Article  CAS  Google Scholar 

  35. Russell AJ, Spackman MA (1997) Mol Phys 90:251

    Article  CAS  Google Scholar 

  36. Doerksen RJ, Thakkar AJ (1999) J Phys Chem A 103:10009

    Article  CAS  Google Scholar 

  37. Spoerel U, Dreizler H, Stahl W, Kraka E, Cremer D (1996) J Phys Chem 100:14298

    Article  CAS  Google Scholar 

  38. Heard GL, Boyd RJ (1997) Chem Phys Lett 277:252

    Article  CAS  Google Scholar 

  39. Palmer MH, McNab H, Reed D, Pollacchi A, Walker IC, Guest MF, Siggel MRF (1997) Chem Phys 214:191

    Article  CAS  Google Scholar 

  40. Palmer MH, McNab H, Walker IC, Guest MF, MacDonald M, Siggel MRF (1998) Chem Phys 228:39

    Article  CAS  Google Scholar 

  41. Dorothy J, Gearhart J, Harrison F, Hunt CK (2003) Int J Quantum Chem 95:697

    Article  Google Scholar 

  42. Batista ER, Xantheas SS, Jónsson H (1998) J Chem Phys 109:4546

    Article  CAS  Google Scholar 

  43. Mitxelena I, Piris M (2016) J Chem Phys 144:204108

    Article  Google Scholar 

  44. Glaser R, Wu Z, Lewis M (2000) J Mol Struct 556:131

    Article  CAS  Google Scholar 

  45. Bundgen P, Grein F, Thakkar AJ (1994) J Mol Struct 334:7

    Article  Google Scholar 

  46. Junquera-Hernández JM, Sánchez-Marín J, Maynau D (2002) Chem Phys Lett 359:343

    Article  Google Scholar 

  47. Piris M, Ugalde JM (2014) Int J Quantum Chem 114:1169

    Article  CAS  Google Scholar 

  48. Pernal K, Giesbertz KJH (2016) Top Curr Chem 368:125

    Article  CAS  Google Scholar 

  49. Kalugina YN, Cherepanov VN (2015) Atmos Ocean Opt 28:406

    Article  CAS  Google Scholar 

  50. Tanner D (1994) Chirale Aziridine-Herstellung und stereoselektive Transformationen. Angew Chem 106:625–646. https://doi.org/10.1002/ange.19941060604

    Article  CAS  Google Scholar 

  51. Osborn HMI, Sweeney J (1997) The asymmetric synthesis of aziridines. Tetrahedron Asymmetry 8:1693–1715. https://doi.org/10.1016/S0957-4166(97)00177-8

    Article  CAS  Google Scholar 

  52. Shi M, Liu JM, Wei Y, Shao LX (2012) Rapid generation of molecular complexity in the Lewis or Brønsted acid-mediated reactions of methylenecyclopropanes. Acc Chem Res 45:641–652

    Article  CAS  Google Scholar 

  53. Parsons AT, Smith AG, Neel AN, Johnson JS (2010) Dynamic kinetic asymmetric synthesis of substituted pyrrolidines from racemic cyclopropanes and aldimines: reaction development and mechanistic insights. J Am Chem Soc 132:9688–9692. https://doi.org/10.1021/ja1032277

    Article  CAS  PubMed  Google Scholar 

  54. Maghsoodlou MT, Khorassani SMH, Heydari R, Charati FR, Hazeri N, Lashkari M, Rostamizadeh M, Marandi G, Sobolev A, Makha M (2009) Highly stereoselective construction of functionalized cyclopropanes from the reaction between acetylenic esters and C–H acids in the presence of triphenylarsine. Tetrahedron Lett 50:4439–4442. https://doi.org/10.1016/j.tetlet.2009.05.051

    Article  CAS  Google Scholar 

  55. Rappoport Z (ed) (1995) The chemistry of the cyclopropyl group. Willey, Chichester

    Google Scholar 

  56. Weissberger A, Taylor EC (eds) (1985) Chemistry of heterocyclic compounds: small ring heterocycles, part 3: oxiranes, arene oxides, oxaziridines, dioxetanes, thietanes, thietes, thiazetes, and others, vol. 42. Wiley, New York

    Google Scholar 

  57. Majumdar KC, Chattopadhyay SK (eds) (2011) Heterocycles in natural product synthesis. Wiley, Weinheim

    Google Scholar 

  58. Bernal I, Levendis DC, Fuchs R, Reisner GM, Cassidy JM (1997) Crystal structures of phenyl-substituted cyclopropanes. IV. The crystal structure (at 21‡C and −100‡C) and the phenyl ring conformation in 4-cyclopropylacetanilide. Struct Chem 8:275–285. https://doi.org/10.1007/BF02252971

    Article  CAS  Google Scholar 

  59. Liu XH, Weng JQ, Tan CX (2013) J Chem ID 306361 1–6

  60. Knauer L, Golz C, Strohmann C (2015) Crystal structure of 1-[(2,4,6-triisopropylphenyl)sulfonyl]aziridine. Acta Crystallogr E Crystallogr Commun 71:438–439. https://doi.org/10.1107/S2056989015010221

    Article  CAS  Google Scholar 

  61. Buijnsters PJJA, Van der Reijen FP, Feiters MC, De Gelder R, Sommerdijk NAJM, Nolte RJM, Zwanenburg B (1999) Synthesis and crystal structure of (+)-(2R,3R)-N, N′-bis-trityl-2,3-bis-aziridine. J Chem Crystallogr 29:179–183. https://doi.org/10.1023/A:100951801035

    Article  CAS  Google Scholar 

  62. Sankar T, Raju P, Mohanakrishnan AK, Naveen S, Lokanath NK, Gunasekaran K (2015) Crystal structure of 2,3-bis(5-bromo-4-fluoro-2-nitrophenyl) oxirane. Struct Chem Cryst Commun 1(1–3) http://structural-crystallography.imedpub.com/crystal-structure-of-23bis5bromo4fluoro2nitrophenyl-oxirane.php?aid=7262

  63. Savithri MP, Yuvaraj PS, Reddy BSR, Rajac R, SubbiahPandic A (2015) Crystal structure of methyl 1-methyl-2-oxospiro[indoline-3,2′-oxirane]-3′-carboxylate. Acta Crystallogr E Crystallogr Commun 71:o274–o275. https://doi.org/10.1107/S2056989015006398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yudin AK (ed) (2006) Aziridines and epoxides in organic synthesis. Wiley, New York

    Google Scholar 

  65. Vansteenkiste P, Van Specybroeck V, Verniest G, De Kimpe N, Waroquier M (2007) J Phys Chem A 111:2797

    Article  CAS  Google Scholar 

  66. Romero A (2016) Mol Phys 114:3040

    Article  CAS  Google Scholar 

  67. Romero A, Squitieri E (2016) Mol Phys 114:2232

    Article  CAS  Google Scholar 

  68. Romero A (2016) A theoretical conformational study on the structural parameters involved in the ring strain of exo-unsaturated four-membered heterocycles, Y=CCH2CH2X. Mol Phys 114:3040–3054. https://doi.org/10.1080/00268976.2016.1213912

    Article  CAS  Google Scholar 

  69. Romero A, Squitieri E (2016) Effect of heterosubstituent and ring puckering angle on linear and nonlinear properties of exo-insaturated four-membered heterocycles, Y=CCH2CH2X: a comparative ab initio, DFT and semi-empirical study. Mol Phys 114:2232–2247

    Article  CAS  Google Scholar 

  70. Romero A, Squitieri E (2016) Potential use of small basis set on the calculations of electronic properties of some four-membered heterocycles: a conformational study. Mol Phys 115:261–277. https://doi.org/10.1080/00268976.2016.1256506

    Article  CAS  Google Scholar 

  71. Romero A (2017) Calculations of molecular multipole electric moments of a series of exo-insaturated four-membered heterocycles, Y= CCH2CH2X. Mol Phys 115:2528–2546. https://doi.org/10.1080/00268976.2017.1333646

    Article  CAS  Google Scholar 

  72. Besseau F, Lucon M, Laurence C, Berthelot M (1998) J Chem Soc Perkin Trans 2:101

    Article  Google Scholar 

  73. Besseau F, Laurence C, Berthelot M (1994) J Chem Soc Perkin Trans 2:48

    Google Scholar 

  74. WuitschiK G, Rogers-Evans M, Muller K, Fischer H, Wagner B, Schuler F, Polonchuk L, Carreira EM (2006) Angew Chem Int Ed 45:7736

    Article  CAS  Google Scholar 

  75. Burkhard JA, Wuitschik G, Rogers-Evans M, Muller K, Carreira EM (2010) Angew Chem Int Ed 49:9052

    Article  CAS  Google Scholar 

  76. Berthelot M, Besseau F, Laurence C (1998) Eur J Org Chem 101:925

    Article  Google Scholar 

  77. Romero AH (2018) Struct Chem. https://doi.org/10.1007/s11224-018-1139-8

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03W, Revision D.01. Gaussian, Inc, Pittsburgh

    Google Scholar 

  79. Møller C, Plesset MS (1934) Note on an approximation treatment for many electron systems. Phys Rev 46:618–622. https://doi.org/10.1103/PhysRev.46.618

    Article  Google Scholar 

  80. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic structure theory. Wiley, New York

    Book  Google Scholar 

  81. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  82. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78:1396. https://doi.org/10.1103/PhysRevLett.78.1396

    Article  CAS  Google Scholar 

  83. Bartlett RJ (2010) The coupled-cluster revolution. Mol Phys 108:2905–2920. https://doi.org/10.1080/00268976.2010.531773

    Article  CAS  Google Scholar 

  84. Bartlett RJ, Musial M (2007) Coupled-cluster theory in quantum chemistry. Rev Mod Phys 79:291. https://doi.org/10.1103/RevModPhys.79.291

    Article  CAS  Google Scholar 

  85. Bartlett RJ (2005, ch. 42) In: Dykstra C et al (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, New York, pp 1191–1221

    Chapter  Google Scholar 

  86. Crawford TD, Schaefer HF (2000, ch. 2) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 14. VCH Publishers, New York, pp 33–136

    Google Scholar 

  87. Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910. https://doi.org/10.1063/1.443164

    Article  CAS  Google Scholar 

  88. Peterson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA, Manzaris J (1988) A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. J Chem Phys 89:2193. https://doi.org/10.1063/1.455064

    Article  Google Scholar 

  89. Peterson GA, Al-Laham MA (1991) A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. J Chem Phys 94:6081. https://doi.org/10.1063/1.460447

    Article  Google Scholar 

  90. Dunning TH (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  91. McLean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11-18. J Chem Phys 72:5639–5648. https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  92. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. 20. Basis set for correlated wave-functions. J Chem Phys 72:650–654. https://doi.org/10.1063/1.438955

    Article  CAS  Google Scholar 

  93. Binkley JS, Pople JA, Hehre WJ (1980) Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements. J Am Chem Soc 102:939–947. https://doi.org/10.1021/ja00523a008

    Article  CAS  Google Scholar 

  94. Gordon MS, Binkley JS, Pople JA, Pietro WJ, Hehre WJ (1982) Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements. J Am Chem Soc 104:2797–2803. https://doi.org/10.1021/ja00374a017

    Article  CAS  Google Scholar 

  95. Kanis DR, Ratner MA, Marks TJ (1994) Chem Rev 94:195

    Article  CAS  Google Scholar 

  96. Hofinger S, Wendland M (2002) Int J Quantum Chem 86:199

    Article  CAS  Google Scholar 

  97. De Proft F, Tielens F, Geerlings P (2000) J Mol Struct (Theochem) 506:1–8

    Article  Google Scholar 

  98. Kalugina YN, Thakkar AJ (2015) Mol Phys. https://doi.org/10.1080/00268976.2015.1059513

  99. Kalugina YN, Thakkar AJ (2016) Chem Phys Lett 644:20

    Article  CAS  Google Scholar 

  100. Kumar A, Thakkar AJ (2016) Mol Phys. https://doi.org/10.1080/00268976.2016.1143568

  101. Hohm U (2006) J Chem Phys 124:124312

    Article  Google Scholar 

  102. Maroulis G, Pouchan C (1996) Theor Chim Acta 93:131

    Article  CAS  Google Scholar 

  103. Maroulis G (2003) J Mol Struct (Theochem) 633:177–197

    Article  CAS  Google Scholar 

  104. Bundgen P, Grein F, Thakkar AJ (1995) J Mol Struct (Theochem) 334:7–13

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks to the Cátedra de Química (Facultad de Farmacia, Universidad Central de Venezuela, Caracas) and Ms. Evangelina Cordero for facilitating computers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel H. Romero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero, A.H. Influence of heteroelement on dipole and quadrupole moments of a series of three-membered rings containing a second, third, fourth, or fifth-row atom: a theoretical investigation. Struct Chem 30, 273–281 (2019). https://doi.org/10.1007/s11224-018-1190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-018-1190-5

Keywords

Navigation