Skip to main content

Advertisement

Log in

Structures and vertical detachment energies of water cluster anions (H2O) n with n = 6–11

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

The structures and vertical detachment energies (VDEs) of water cluster anions (H2O) n with n = 6–11 are examined by an unbiased global search algorithm, namely comprehensive genetic algorithm (CGA) combined with density functional theory. Benchmark evaluation shows that the B3LYP-D3/6-31(+,3+)G* level of theory could give comparable accuracy of MP2/6-31(+,3 +)G* about the geometric property of water cluster anions. Meanwhile, the energies simulated at the MP2/6-31(+,3 +)G* level of theory converge to the results of CCSD(T)/6-31(+,3 +)G* level. Therefore, the relative energies and VDE of water cluster anions are calculated at the MP2/6-31(+,3 +)G*//B3LYP-D3/6-31(+,3 +)G* level of theory. The structures of (H2O) 6–11 clusters obtained from CGA represent that the excess electron destroys the hydrogen bond network and forms an electron hole in most structures. The water cluster anions prefer to form three-membered rings and four-membered rings. As the cluster size increases, the VDE of the water cluster anions increases because the excess electron becomes less diffuse in the larger-sized clusters. Our work gives a comprehensive study about the excess electron disturbing the small-sized neutral water clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armbruster M, Haberland H, Schindler H-G (1981) Phys Rev Lett 47:323–326

    Article  CAS  Google Scholar 

  2. Garrett BC, Dixon DA, Camaioni DM, Chipman DM, Johnson MA, Jonah CD, Kimmel GA, Miller JH, Rescigno TN, Rossky PJ, Xantheas SS, Colson SD, Laufer AH, Ray D, Barbara PF, Bartels DM, Becker KH, Bowen KH, Bradforth SE, Carmichael I, Coe JV, Corrales LR, Cowin JP, Dupuis M, Eisenthal KB, Franz JA, Gutowski MS, Jordan KD, Kay BD, LaVerne JA, Lymar SV, Madey TE, McCurdy CW, Meisel D, Mukamel S, Nilsson AR, Orlando TM, Petrik NG, Pimblott SM, Rustad JR, Schenter GK, Singer SJ, Tokmakoff A, Wang L-S, Zwier TS (2005) Chem Rev 105:355–390

    Article  CAS  PubMed  Google Scholar 

  3. Abel B, Buck U, Sobolewski AL, Domcke W (2012) Phys Chem Chem Phys 14:22–34

    Article  CAS  PubMed  Google Scholar 

  4. Elkins MH, Williams HL, Shreve AT, Neumark DM (2013) Science 342:1496

    Article  CAS  PubMed  Google Scholar 

  5. Ayotte P, Weddle GH, Bailey CG, Johnson MA, Vila F, Jordan KD (1999) J Chem Phys 110:6268–6277

    Article  CAS  Google Scholar 

  6. Hammer NI, Roscioli JR, Johnson MA (2005) J Phys Chem A 109:7896–7901

    Article  CAS  PubMed  Google Scholar 

  7. Hammer NI, Roscioli JR, Bopp JC, Headrick JM, Johnson MA (2005) J Chem Phys 123:244311

    Article  CAS  PubMed  Google Scholar 

  8. Roscioli JR, Hammer NI, Johnson MA (2006) J Phys Chem A 110:7517–7520

    Article  CAS  PubMed  Google Scholar 

  9. Asmis KR, Santambrogio G, Zhou J, Garand E, Headrick J, Goebbert D, Johnson MA, Neumark DM (2007) J Chem Phys 126:191105

    Article  CAS  PubMed  Google Scholar 

  10. Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW, Bowen KH, Ludewigt C, Haberland H, Worsnop DR (1990) J Chem Phys 92:3980–3982

    Article  CAS  Google Scholar 

  11. Kim J, Becker I, Cheshnovsky O, Johnson MA (1998) Chem Phys Lett 297:90–96

    Article  CAS  Google Scholar 

  12. Verlet JRR, Bragg AE, Kammrath A, Cheshnovsky O, Neumark DM (2005) Science 307:93

    Article  CAS  PubMed  Google Scholar 

  13. Coe JV, Arnold ST, Eaton JG, Lee GH, Bowen KH (2006) J Chem Phys 125:014315

    Article  CAS  PubMed  Google Scholar 

  14. Kammrath A, Verlet JRR, Griffin GB, Neumark DM (2006) J Chem Phys 125:076101

    Article  CAS  PubMed  Google Scholar 

  15. Ma L, Majer K, Chirot F, Issendorff BV (2009) J Chem Phys 131:144303

    Article  CAS  PubMed  Google Scholar 

  16. Griffin GB, Young RM, Ehrler OT, Neumark DM (2009) J Chem Phys 131:194302

    Article  CAS  PubMed  Google Scholar 

  17. Young RM, Yandell MA, King SB, Neumark DM (2012) J Chem Phys 136:094304

    Article  CAS  PubMed  Google Scholar 

  18. Marsalek O, Uhlig F, Frigato T, Schmidt B, Jungwirth P (2010) Phys Rev Lett 105:043002

    Article  CAS  PubMed  Google Scholar 

  19. Marsalek O, Uhlig F, VandeVondele J, Jungwirth P (2012) Acc Chem Res 45:23–32

    Article  CAS  PubMed  Google Scholar 

  20. Herbert JM, Head-Gordon M (2005) J Phys Chem A 109:5217–5229

    Article  CAS  PubMed  Google Scholar 

  21. Herbert JM, Head-Gordon M (2006) Phys Chem Chem Phys 8:68–78

    Article  CAS  PubMed  Google Scholar 

  22. Williams CF, Herbert JM (2008) J Phys Chem A 112:6171–6178

    Article  CAS  PubMed  Google Scholar 

  23. Xu P, Gordon MS (2014) J Phys Chem A 118:7548–7559

    Article  CAS  PubMed  Google Scholar 

  24. Zhang C, Bu Y (2016) Phys Chem Chem Phys 18:23812–23821

    Article  CAS  PubMed  Google Scholar 

  25. Zhang C, Bu Y (2017) Phys Chem Chem Phys 19:2816–2825

    Article  CAS  PubMed  Google Scholar 

  26. Ünal A, Bozkaya U (2018) J Chem Phys 148:124307

    Article  CAS  PubMed  Google Scholar 

  27. Jacobson LD, Herbert JM (2011) J Am Chem Soc 133:19889–19899

    Article  CAS  PubMed  Google Scholar 

  28. Zhao J, Shi R, Sai L, Huang X, Su Y (2016) Mol Simul 42:809–819

    Article  CAS  Google Scholar 

  29. Delley B (1990) J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  30. Delley B (2000) J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  31. Shi R, Huang X, Su Y, Lu H-G, Li S-D, Tang L, Zhao J (2017) J Phys Chem A 121:3117–3127

    Article  CAS  PubMed  Google Scholar 

  32. Shi R, Wang P, Tang L, Huang X, Chen Y, Su Y, Zhao J (2018) J Phys Chem A 122:3413–3422

    Article  CAS  PubMed  Google Scholar 

  33. Shi R, Li K, Su Y, Tang L, Huang X, Sai L, Zhao J (2018) J Chem Phys 148:174305

    Article  CAS  PubMed  Google Scholar 

  34. Wang P, Shi R, Su Y, Tang L, Huang X, Zhao J (2019) Front Chem 7

  35. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  36. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  37. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  38. Møller C, Plesset MS (1934) Phys Rev 46:618–622

    Article  Google Scholar 

  39. Purvis GD, Bartlett RJ (1982) J Chem Phys 76:1910–1918

    Article  CAS  Google Scholar 

  40. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483

    Article  CAS  Google Scholar 

  41. Watts JD, Gauss J, Bartlett RJ (1993) J Chem Phys 98:8718–8733

    Article  CAS  Google Scholar 

  42. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian H, Izmaylov A, Bloino J, Zheng G, Sonnenberg J, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J, Peralta J, Ogliaro F, Bearpark M, Heyd J, Brothers E, Kudin K, Staroverov V, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J, Iyengar S, Tomasi J, Cossi M, Rega N, Millam J, Klene M, Knox J, Cross J, Bakken V, damo C, Jaramillo J, Gomperts R, Stratmann R, Yazyev O, Austin A, Cammi R, Pomelli C, Ochterski J, Martin R, Morokuma K, Zakrzewski V, Voth G, Salvador P, Dannenberg J, Dapprich S, Daniels A, Farkas O, Foresman J, Ortiz J, Cioslowski JF (2013) Gaussian 09 (Revision-E. 01), Gaussian, Wallingford CT

  43. Li F, Wang L, Zhao J, Xie J-H, Riley K, Chen Z (2011) Theor Chem Acc 130:341–352

    Article  CAS  Google Scholar 

  44. Jacobson LD, Herbert JM (2010) J Chem Phys 133:154506

    Article  CAS  PubMed  Google Scholar 

  45. Sommerfeld T, DeFusco A, Jordan KD (2008) J Phys Chem A 112:11021–11035

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11674046, 11804076, 11904251), the Science Challenge Project (No. TZ2016001), and the Supercomputing Center of Dalian University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Su or Jijun Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published as part of the special collection of articles derived from the Chemical Concepts from Theory and Computation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, R., Zhao, Z., Liang, X. et al. Structures and vertical detachment energies of water cluster anions (H2O) n with n = 6–11. Theor Chem Acc 139, 66 (2020). https://doi.org/10.1007/s00214-020-2567-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-020-2567-2

Keywords

Navigation