Skip to main content
Log in

Hydrogen-abstraction reactions of fully hydrogenated silicon fullerene cages with the amino radical: a density functional study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

We applied density functional theory calculations to study reactions NH2 + SinHn fullerenes (n = 4, 6, 8, 10, 20, 24, 30, 36, and 50). The reactions between SinHn fullerenes and NH2 radical are obtained to be exothermic, proceeding through a hydrogen-bonded prereactive complex. The resemblance between the structures of the reactants and the transition states indicates that the transition states appear earlier for the considered exothermic reactions. The calculated ΔH0 298 and ΔETS are in good correlation with the spherical excesses φi, showing upward trend with increasing curvature on silicon sites. The reactions of Si20H20 and Si20F20 with NH2 and NF2 radicals were also investigated. The reaction between Si20H20 and NF2 radical also proceeds through a hydrogen-bonded prereactive complex. However, this reaction is endothermic, and as compared with the reaction of NH2 + Si20H20, the prereactive complex has stronger hydrogen bonding which leads to higher activation barrier. The reaction of Si20F20 and NF2 radical as well as NH2 radical is obtained to be endothermic, having significantly higher barriers via “late” transition states, in comparison to the reaction of NH2 + Si20H20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fthenakis ZG, Havenith RWA, Menon M, Fowler PW (2007) Surface physics, nanoscale physics, low-dimensional systems-structural and electronic properties of the fullerene isomers of Si38: a systematic theoretical study. Phys Rev B 75:155435-1–155435-8

    Article  Google Scholar 

  2. Ona O, Bazterra VE, Caputo MC, Facelli JC, Fuentealba P, Ferraro MB (2006) Modified genetic algorithms to model cluster structures in medium-sized silicon clusters: Si18−Si60. Phys Rev A 73:053203-1–05320311

    Article  Google Scholar 

  3. Zhao J, Ma L, Wen B (2007) Lowest-energy endohedral fullerene structure of Si60 from a genetic algorithm and density-functional theory. J Phys Condens Matter 19:226208-1–226208-6

    Google Scholar 

  4. Belomion G, Therrien J, Smith A, Rao S, Twesten R, Chaieb S, Nayfeh MH, Wagner L, Mitas L (2002) Observation of a magic discrete family of ultrabright Si nanoparticles. Appl Phys Lett 80:841–843

    Article  Google Scholar 

  5. Kumar V, Kawazoe Y (2003) Hydrogenated silicon fullerenes: effects of H on the stability of metal-encapsulated silicon clusters. Phys. Rev. Lett. 90:055502-1-4

  6. Galashev AE (2008) Thermal instability of silicon fullerenes stabilized with hydrogen: computer simulation. Semiconductors 42:596–603

    Article  CAS  Google Scholar 

  7. Zdetsis AD (2007) High-symmetry high-stability silicon fullerenes: a first-principles study. Phys Rev B 76:075402-1–075402-5

    Article  Google Scholar 

  8. Karttunen AJ, Linnolahti M, Pakkanen TA (2007) Icosahedral polysilane nanostructures. J Phys Chem C 111:2545–2547

    Article  CAS  Google Scholar 

  9. Earley CW (2000) Ab initio investigation of strain in group 14 polyhedrane clusters (M n H n : n = 4, 6, 8, 10, 12, 16, 20, 24). J Phys Chem A 104:6622–6627

    Article  CAS  Google Scholar 

  10. Wang L, Li D, Yang D (2006) Fully exohydrogenated Si60 fullerene cage. Mol Simulat 32:663–666

    Article  CAS  Google Scholar 

  11. Pichierri F, Kumar V, Kawazoe Y (2004) Exohedral functionalization of the icosahedral cluster Si20H20: a density functional theory study. Chem Phys Lett 383:544–548

    Article  CAS  Google Scholar 

  12. Anafcheh M, Ghafouri R (2014) Exploring electronic properties of Si20-n H20−P n heterofullerenes (N = 1, 2, 5, and 10) based on NMR and NBO analysis: a DFT study. Phosphorus Sulfur Silicon Relat Elem 189:60–73

    Article  CAS  Google Scholar 

  13. Anafcheh M, Ghafouri R, Hadipour NL (2012) 1H and 29Si NMR investigation of SinHn polysilanes with n < 60: a DFT study. Phys E 44:2099–2104

    Article  CAS  Google Scholar 

  14. Anafcheh M, Ghafouri R (2014) Evaluation of on-cage phosphorus doping of hydrogenated silicon fullerenes: a computational study. Struct Chem 25:37–42

    Article  CAS  Google Scholar 

  15. Anafcheh M, Ghafouri R (2014) (SiH)48X12 heterofullerenes with the group III and V dopants: a DFT prediction of geometry, stability, and electronic structure. J Clust Sci 25:505–515

    Article  CAS  Google Scholar 

  16. Ghafouri R, Anafcheh M, Zahedi M (2014) Fully and partially exohydrogenated Si80 fullerene cage. Struct Chem 25:575–581

    Article  CAS  Google Scholar 

  17. Ghafouri R, Ektefa F (2016) Exploring the mechanism of reactions of SiX3 and CX3 radicals with Si20X20 fullerenes (X = H, F): a density functional study. J Clust Sci 27:1719–1728

    Article  CAS  Google Scholar 

  18. Demissy M, Lesclaux R (1980) A flash photolysis-laser resonance absorption study. J Am Chem Soc 102:2897–2902

    Article  CAS  Google Scholar 

  19. Sun W, Yang L, Yu L, Saeys M (2009) Ab initio reaction path analysis for the initial hydrogen abstraction from organic acids by hydroxyl radicals. J Phys Chem A 113:7852–7860

    Article  CAS  Google Scholar 

  20. Li QS, Lu RH (2002) Direction dynamics study of the hydrogen abstraction reaction CH2O + NH2 → CHO + NH3. J Phys Chem A 106:9446–9450

    Article  CAS  Google Scholar 

  21. Mebel AM, Lin MC (1999) Prediction of absolute rate constants for the reactions of NH2 with alkanes from ab initio G2M/TST calculations. J Phys Chem A 103:2088–2096

    Article  CAS  Google Scholar 

  22. Yu Y-X, Li S-M, Xu Z-F, Li Z-S, Sun C-C (1998) An ab initio study on the reaction NH2 + CH4 →NH3 + CH3. Chem Phys Lett 296:131–136

    Article  CAS  Google Scholar 

  23. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  24. Hariharan PC, Pople JA (1974) Accuracy of AH n equilibrium geometries by single determinant molecular orbital theory. Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  25. Zhang Y, Wu A, Xu X, Yan Y (2007) Geometric dependence of the B3LYP-predicted magnetic shieldings and chemical shifts. J Phys Chem A 111:9431–9437

    Article  CAS  Google Scholar 

  26. Ghafouri R, Ektefa F (2015) Functionalization of carbon ad-dimer defective single-walled carbon nanotubes through 1,3-dipolar cycloaddition: a DFT study. Struct Chem 26:507–515

    Article  CAS  Google Scholar 

  27. Anafcheh M, Ghafouri R (2014) Mono-and multiply-functionalized fullerene derivatives through 1, 3-dipolar cycloadditions: a DFT study. Phys E 56:351–356

    Article  CAS  Google Scholar 

  28. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  29. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elsevier, Amsterdam

    Google Scholar 

  30. Pichierri F, Kumar V (2009) Geometries and electronic structures of phosphorous-doped silicon fullerenes: a DFT study. J Mol Struc-THEOCHEM 900:71–76

    Article  CAS  Google Scholar 

  31. Zhang H, Liu P, Liu J-Y, Li Z-S (2013) Theoretical study and rate constant calculations for the reactions of SiHX3 with CF3 and CH3 radicals (X = F, Cl). J Mol Model 19:1515–1525

    Article  CAS  Google Scholar 

  32. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, Oxford

    Google Scholar 

  33. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  34. Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735–746

    Article  CAS  Google Scholar 

  35. Para RD, Bulusu S, Zeng XC (2003) Cooperative effects in one-dimensional chains of three-center hydrogen bonding interactions. J Chem Phys 118:3499–3509

    Article  Google Scholar 

  36. Hammond GS (1955) A correlation of reaction rates. J Am Chem Soc 77:334–338

    Article  CAS  Google Scholar 

  37. Neretin IS, Lyssenko KA, Antipin MY, Slovokhotov YL, Boltalina OV, Troshin PA, Lukonin AY, Sidorov LN, Taylor R (2000) C60F18, a flattened fullerene: alias a hexa-substituted benzene. Angew Chem Int Ed 39:3273–3276

    Article  CAS  Google Scholar 

  38. Ghafouri R, Anafcheh M (2013) Fully and partially exohydrogenated Si80 fullerene cage. J Fluor Chem 145:88–94

    Article  CAS  Google Scholar 

  39. Gutsev GL (1993) A theoretical investigation of the electronic and geometrical structure of silicon fluorides SiF n and their anions SiF n ,n=1−6. Russ Chem Bull 42:36–45

    Article  Google Scholar 

  40. Wang H, Wu L (2011) A density functional investigation of fluorinated silicon clusters. Chin J Chem 29:735–740

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Ghafouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anafcheh, M., Naderi, F. & Ghafouri, R. Hydrogen-abstraction reactions of fully hydrogenated silicon fullerene cages with the amino radical: a density functional study. Struct Chem 29, 607–614 (2018). https://doi.org/10.1007/s11224-017-1057-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1057-1

Keywords

Navigation