Skip to main content
Log in

Theoretical study on coordination of methanol clusters to 3-methyl-4-pyrimidone

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Density functional theory (DFT), MP2, and couple cluster ab initio methods were employed to investigate the microsolvation of 3-methyl-4-pyrimidone (3M4P) surrounded by methanol (MeOH) molecules. Structures are analyzed based on hydrogen bonds with a focus on relative energies, interaction energies, hydrogen bond cooperativity, hydrogen bonding geometries, and redshifts in the frequencies of O–H and C=O stretching modes. Our results show that there is no preferential orientation of MeOH attacks on the carbonyle site of 3M4P; both trans and cis 3M4P-MeOH complexes have same chance to be observed. cis 3M4P-MeOH and 3M4P-MeOH complex in which MeOH is located on N lie 0.56 and 3.11 kJ/mol at CCSD(T)/6-31+G(d,p) (0.63 and 1.67 kJ/mol at MP2/6-311++G(d,p)) above trans 3M4P-MeOH. MeOH dimers form more stable 3M4P-(MeOH)2 complexes compare to 3M4P-(MeOH)2 complexes in which individual MeOH molecules bind to carbonyl and N. Relative energies of 3M4P-(MeOH)3 computed using various DFT methods point out the complex formed by linear MeOH trimer along methyl group of 3M4P (cis 3M4P-(MeOH)3) as lowest. Carbonyl group is predicted as preferential site for hydrogen bond interaction. Besides O–H…O and O–H…N hydrogen bonds, 3M4P-(MeOH)2 and 3M4P-(MeOH)3 complexes are also stabilized by H–O…H–C weak interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alberts B, Johnson A, Lewis J, et al. (2002) Molecular biology of the cell, 4th edn. Garland Science, New York,

    Google Scholar 

  2. Lodish H, Berk A, Zipursky SL, et al. (2000) Molecular cell biology, 4th edn. W. H. Freeman, New York,

    Google Scholar 

  3. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer-Verlag, Berlin,

    Book  Google Scholar 

  4. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York,

    Google Scholar 

  5. Grabowski SJ (ed.) (2006) Hydrogen bonding—new insights. Springer, New York,

    Google Scholar 

  6. Scheiner S (1997) Hydrogen bonding, a theoretical perspective. Oxford University Press, New York,

    Google Scholar 

  7. Szatyłowicz H, Sadlej-Sosnowska N (2010) J Chem Inf Model 50:2151–2161

    Article  Google Scholar 

  8. Matta CF, Castillo N, Boyd RJ (2006) Extended weak bonding interactions in DNA: π-stacking (base-base), base-backbone, and backbone-backbone interactions J Phys Chem B 110:563–578

    Article  CAS  Google Scholar 

  9. Kasende O, Zeegers-Huyskens T (1981) J Mol Struct 75:201–207

    Article  CAS  Google Scholar 

  10. Kasende O, Zeegers-Huyskens T (1984) J Phys Chem 88:2636–2642

    Article  CAS  Google Scholar 

  11. Kasende O, Zeegers-Huyskens T (1984) Spectrosc Lett 17:783–801

    Article  CAS  Google Scholar 

  12. Muzomwe M, Boeckx B, Maes G, Kasende OE (2011) S Afr J Chem 64:23–33

    CAS  Google Scholar 

  13. Muzomwe M, Maes G, Kasende OE (2012) Nat Sci 4:286–297

    CAS  Google Scholar 

  14. Kasende OE, Muya JT, Broeckaert L, Maes G, Geerlings P (2011) J Phys Chem A 116:8608–8614

    Article  Google Scholar 

  15. Szalewicz K (2012) Wiley interdisciplinary reviews: computational molecular science, vol 2, pp. 254–272

    Google Scholar 

  16. Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, et al. (2015) Mol Phys 113:184–215

    Article  CAS  Google Scholar 

  17. Weinhold F, Landis CR (2012) Discovering chemistry with natural bond orbitals. John Wiley & Sons, Hoboken, New Jersey,

    Book  Google Scholar 

  18. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, (2009).

  19. GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J., Semichem Inc., Shawnee Mission, KS (2009).

  20. http://www.chemcraftprog.com

  21. Geerlings P, Proft FD, Langenaeker W (2003) Conceptual density functional theory Chem Rev

  22. Murray JS, Politzer P (2011) The electrostatic potential : an overview Commput Mol Sci 1:153–163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

JT Muya thanks the Korea Research Fellowship program for the financial support and Prof. Carol Parish for the support and permissions to use the facilities and computing resources of the University of Richmond.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mayaliwa Muzomwe, Jules Tshishimbi Muya or Okuma Emile Kasende.

Electronic supplementary materials

ESM 1

Table S1. Selected bonds and angles formed by MeOH in 3M4P-MeOH (1bd) computed using various DFT and MP2 at 6-311++G(d,p) and CCSD/6-31G+(d,p). The B3LYP and CCSD values given in parenthesis were obtained with 6-31+G(d) and 6-31G(d) basis sets, respectively. Table S2. SAPT2 interaction energies in kJ/mol components computed at HF/6-31+G(d,p) of 3M4P-MeOH. Table S3. Red shifted of O–H and C=O vibrational frequencies (Δν in cm−1) involved in the hydrogen bond interaction between 3M4P and MeOH in 3M4P-(MeOH)1–3 complexes calculated at B3LYP/6-31++G(d,p). In parenthesis are red shifted of O–H vibrator between MeOH molecules. Fig. S1. Labels of atoms in 3M4P-MeOH (a) and 3M4P-(MeOH)2 (b) complexes used for E(2) NBO analysis in Table 4. (DOCX 149 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muzomwe, M., Muya, J.T., Hoeil, C. et al. Theoretical study on coordination of methanol clusters to 3-methyl-4-pyrimidone. Struct Chem 29, 1–8 (2018). https://doi.org/10.1007/s11224-017-0992-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-0992-1

Keywords

Navigation