Skip to main content
Log in

Molecular triskelions: structure and bonding in the perhalogenated analogues of boric acid, X3BO3 (X=F, Cl, Br, I)

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Using density functional theory calculations, we investigate the geometries and electronic structures of the perhalogenated derivatives of boric acid, X3BO3 (with X = halogen). These molecules in their low-energy states are C3h symmetric with a shape that resembles a triskelion, an ancient symbol that appears inside the flags and coat of arms of countries, regions, and cities throughout Europe. The molecular triskelions can form polar complexes with ammonia which are stabilized by a dative bond between nitrogen and boron, while a second type of adducts arises from the halogen bonding between nitrogen and the terminal halogen atom. By virtue of their different HOMO–LUMO gaps, the molecular triskelions and their complexes with ammonia might provide novel bulk materials where the band gap can be tuned simply by changing the type of halogen bonded to the BO3 moiety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Eaton PE, Cole TW (1964) Cubane. J Am Chem Soc 86:3157–3158

    Article  CAS  Google Scholar 

  2. Pichierri F (2014) Hypercubane: DFT-based prediction of an Oh-symmetric double shell hydrocarbon. Chem Phys Lett 612:198–202

    Article  CAS  Google Scholar 

  3. Freeman WA, Mock WL, Shih NY (1981) Cucurbituril. J Am Chem Soc 103:7367–7368

    Article  CAS  Google Scholar 

  4. Shen Y, Chen CF (2012) Helicenes: synthesis and applications. Chem Rev 112:1463–1535

    Article  CAS  Google Scholar 

  5. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318:162–163

    Article  CAS  Google Scholar 

  6. Hargittai M, Hargittai I (2009) Symmetry through the eyes of a chemist, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  7. Carter RL (1998) Molecular symmetry and group theory. Wiley, New York

    Google Scholar 

  8. Weyl H (1952) Symmetry. Princeton University Press, Princeton

    Book  Google Scholar 

  9. Zachariasen WH (1934) The crystal lattice of boric acid, BO3H3. Z Kristallogr 88:150–161

    CAS  Google Scholar 

  10. Zachariasen WH (1954) The precise structure of orthoboric acid. Acta Cryst 7:305–310

    Article  CAS  Google Scholar 

  11. Shuvalov RR, Burns PC (2003) A new polytype of orthoboric acid, H3BO3-3T1. Acta Cryst C59:i47–i49

    CAS  Google Scholar 

  12. Gajhede M, Larsen S, Rettrup S (1986) Electron density of orthoboric acid determined by X-ray diffraction at 105 K and ab initio calculations. Acta Cryst B 42:545–552

    Article  Google Scholar 

  13. Craven BM, Sabine TM (1966) A neutron diffraction study of orthoboric acid D3BO3. Acta Cryst 20:214–219

    Article  CAS  Google Scholar 

  14. Tian SX, Xu KZ, Huang M-B, Chen XJ, Yang JL, Ja CC (1999) Theoretical study on infrared vibrational spectra of boric-acid in gas-phase using density functional methods. J Mol Struct (Theochem) 459:223–227

    Article  Google Scholar 

  15. Stefani D, Pashalidis I, Nicolaides AV (2008) A computational study of the conformations of the boric acid (B(OH3)), its conjugated base ((HO)2BO) and borate anion (B(OH) 4 ). J Mol Struct (Theochem) 853:33–38

    Article  CAS  Google Scholar 

  16. Elango M, Parthasarathi R, Subramanian V (2005) Bowls, balls and sheets of boric acid clusters: the role of pentagon and hexagon motifs. J Phys Chem A 109:8587–8593

    Article  CAS  Google Scholar 

  17. Wang W, Zhang Y, Huang K (2005) Prediction of a family of cage-shaped boric acid clusters. J Phys Chem B 109:8562–8564

    Article  CAS  Google Scholar 

  18. Elango M, Subramanian V, Rahalkar AP, Gadre SR, Sathyamurthy N (2008) Structure, energetics, and reactivity of boric acid nanotubes: a molecular tailoring approach. J Phys Chem A 112:7699–7704

    Article  CAS  Google Scholar 

  19. Esrafili MD, Alizadeh V (2011) Characterization of O–H···O interactions in linear and cyclic clusters of boric acid: an ab initio, DFT, QTAIM and NBO study. Comput Theor Chem 974:66–75

    Article  CAS  Google Scholar 

  20. Tachikawa M (2004) A density functional study on hydrated clusters of orthoboric acid, B(OH)3(H2O)n (n = 1–5). J Mol Struct (Theochem) 710:139–150

    Article  CAS  Google Scholar 

  21. Zapol P, Curtiss LA, Erdemir A (2000) Periodic ab initio calculations of orthoboric acid. J Chem Phys 113:3338–3343

    Article  CAS  Google Scholar 

  22. Lewars EG (2011) Computational chemistry, 2nd edn. Springer, Dordrecht

    Book  Google Scholar 

  23. Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox D J. Gaussian, Inc., Wallingford CT, (2009)

  24. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98:5648–5652

    Article  CAS  Google Scholar 

  25. Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys Chem Chem Phys 7:3297–3305

    Article  CAS  Google Scholar 

  26. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  27. Dennington R, Keith T, Millam J (2009) GaussView, Version 5. Semichem Inc. Shawnee Mission, Shawnee

    Google Scholar 

  28. Groom CR, Allen FH (2014) The Cambridge structural database in retrospect and prospect. Angew Chem Int Ed 53:662–671

    Article  CAS  Google Scholar 

  29. Pauling L (1960) The nature of the chemical bond, 3rd edn. Cornell University Press, Cornell

    Google Scholar 

  30. Fonseca TAO, Freitas MP, Cormanich RA, Ramalho TC, Tormena CF, Rittner R (2012) Computational evidence for intramolecular hydrogen bonding and nonbonding X O interactions in 2′-haloflavonols. Beilstein J Org Chem 8:112–117

    Article  CAS  Google Scholar 

  31. Bader RFW (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  32. Nemykin VN, Maskaev AV, Geraskina MR, Yusubov MS, Zhdankin VV (2011) Preparation and X-ray crystal study of benziodoxaborole derivatives: new hypervalent iodine heterocycles. Inorg Chem 50:11263–11272

    Article  CAS  Google Scholar 

  33. Dunkelberg O, Haas A, Klapdor MF, Mootz D, Pall W, Appelman EH (1994) Oxidationsreaktionen mit HOF sowie Addukte von HOF und HF mit Acetonitril. Chem Ber 127:1871–1875

    Article  CAS  Google Scholar 

  34. Clark T, Hennemann M, Murray JS, Politzer P (2007) Halogen bonding: the σ-hole. J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  35. Politzer P, Murray JS, Clark T (2013) Halogen bonding and other σ-hole interactions: a perspective. Phys Chem Chem Phys 15:11178–11189

    Article  CAS  Google Scholar 

  36. Billes F, Ziegler I, Mikosch H (2015) Application of quantum chemistry for the interpretation of vibrational spectra. Struct Chem 26:1703–1714

    Article  CAS  Google Scholar 

  37. Ogden JS, Young NA (1988) The characterisation of molecular boric acid by mass spectrometry and matrix isolation infrared spectroscopy. J Chem Soc Dalton Trans. 1645–1652. doi:10.1039/DT9880001645

  38. Shore SG, Parry RW (1955) The crystalline compound ammonia-borane, H3NBH3. J Am Chem Soc 77:6084–6085

    Article  CAS  Google Scholar 

  39. Ramachandran PV, Gagare PD (2007) Preparation of ammonia borane in high yield and purity, methanolysis, and regeneration. Inorg Chem 46:7810–7817

    Article  CAS  Google Scholar 

  40. Boys SF, Bernardi F (1970) Calculation of small molecular interactions by differences of separate total energies: some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I wish to thank Professor István Hargittai for inviting me to contribute to this special issue of Structural Chemistry dedicated to Alan Mackay’s 90th birthday and for stimulating discussions about symmetry. Also, the useful suggestions of anonymous reviewers are gratefully acknowledged. This work is supported by the Department of Applied Chemistry of the Graduate School of Engineering (Tohoku University) and by the Japan Society for the Promotion of Science (JSPS) “Grants-in-Aid for Scientific Research” (Kakenhi-C) Nr. 15K05580.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Pichierri.

Additional information

This article is dedicated to Alan Mackay’s 90th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pichierri, F. Molecular triskelions: structure and bonding in the perhalogenated analogues of boric acid, X3BO3 (X=F, Cl, Br, I). Struct Chem 28, 213–223 (2017). https://doi.org/10.1007/s11224-016-0835-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-016-0835-5

Keywords

Navigation