Skip to main content
Log in

Accuracy of density functionals in the description of dispersion interactions and IR spectra of phosphates and phosphorylated compounds

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The performances of quantum chemistry methods (i.e., DFT and ab initio) in calculating the structural and vibrational properties of phosphates and phosphorylated compounds have been evaluated. Diethyl-phosphate, phosphonic acid, dihydrogen phosphate anion, phosphoric acid dimer and protonated glycylphosphotyrosine dipeptide were selected for our study. Geometry and harmonic frequency deviations were investigated, pointing out the contribution of dispersion interactions on diethyl-phosphate, [Gly-pTyr+H]+ and the phosphoric acid dimer. The B3LYP-D functional, followed by CC2 and MP2 methods, revealed significant accuracy for frequency calculations of the majority of the phosphorylated compounds in comparison with available experimental data. These investigations provide a guide to the accurate computation of phosphorylated biological compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blom N, Kreegipuu A, Brunak S (1998) Nucleic Acids Res 26:382

    Article  CAS  Google Scholar 

  2. Diella F, Cameron S, Gemünd C, Linding R, Via A, Kuster B, Sicheritz-Pontén T, Blom N, Gibson T (2004) J BMC Bioinforma 5:79

    Article  Google Scholar 

  3. Johnson LN, Lewis RJ (2001) Chem Rev 101:2209

    Article  CAS  Google Scholar 

  4. Kreegipuu A, Blom N, Brunak S (1999) Nucleic Acids Res 27:237

    Article  CAS  Google Scholar 

  5. Engel D, Nudelman A, Levovich I, Gruss-Fischer T, Entin-Meer M, Phillips DR, Cutts SM, Rephaeli A (2006) J Cancer Res Clin Oncol 132:673

    Article  CAS  Google Scholar 

  6. Park J, Singh B, Maj MC, Gupta RS (2004) Protein J 23:167

    Article  CAS  Google Scholar 

  7. Cuisset A, Mouret G, Pirali O, Roy P, Cazier F, Nouali H, Demaison J (2008) J Phys Chem B 112:12516

    Article  CAS  Google Scholar 

  8. Smirnova IN, Cuisset A, Hindle F, Mouret G, Bocquet R, Pirali O, Roy P (2010) J Phys Chem B 114:16936

    Article  CAS  Google Scholar 

  9. Salpin JY, Guillaumont S, Ortiz D, Tortajada J, Maître P (2011) Inorg Chem 50:7769

    Article  CAS  Google Scholar 

  10. Chiavarino B, Crestoni ME, Fornarini S, Lanucara F, Lemaire J, Maitre P, Scuderi D (2008) Int J Mass Spectrom 270:111

    Article  CAS  Google Scholar 

  11. Fales BS, Fujamade NO, Oomens J, Rodgers MT (2011) J Am Soc Mass Spectrom 22:1862

    Article  CAS  Google Scholar 

  12. Nei YW, Hallowita N, Steill JD, Oomens J, Rodgers MT (2013) J Phys Chem A 117:1319

    Article  CAS  Google Scholar 

  13. Rummel JL, Steill JD, Oomens J, Contreras CS, Pearson WL, Szczepanski J, Powell DH, Eyler JR (2011) Anal Chem 83:4045

    Article  CAS  Google Scholar 

  14. Fales BS, Fujamade NO, Nei YW, Oomens J, Rodgers MT (2011) J Am Soc Mass Spectrom 22:81

    Article  CAS  Google Scholar 

  15. Nei YW, Crampton KT, Berden G, Oomens J, Rodgers MT (2013) J Phys Chem A 117:10634

    Article  CAS  Google Scholar 

  16. Lanucara F, Crestoni ME, Chiavarino B, Fornarini S, Hernandez O, Scuderi D, Maitre P (2013) RSC Adv 3:12711

    Article  CAS  Google Scholar 

  17. Dahlke EE, Orthmeyer MA, Truhlar DG (2008) J Phys Chem B 112:2372

    Article  CAS  Google Scholar 

  18. Riley KE, Hobza P (2007) J Phys Chem A 111:8257

    Article  CAS  Google Scholar 

  19. Van Mourik T (2008) J Chem Theory Comput 4:1610

    Article  Google Scholar 

  20. Perdew JP, Kurth S, Zupan A, Blaha P (1991) Phys Rev Lett 82:2544

    Article  Google Scholar 

  21. Adamo C, Ernzerhof M, Scuseria GE (2000) J Chem Phys 112:2643

    Article  CAS  Google Scholar 

  22. Peverati R, Truhlar DG (2011) J Phys Chem Lett 2:2810

    Article  CAS  Google Scholar 

  23. Savin A (1996) In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, pp 327–357

  24. Song JW, Watson MA, Hirao K (2009) J Chem Phys 131:144108

    Article  Google Scholar 

  25. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540

    Article  CAS  Google Scholar 

  26. Jacquemin D, Perpète EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2007) J Chem Phys 126:144105

    Article  Google Scholar 

  27. Becke AD, Johnson ER (2005) J Chem Phys 122:154104

    Article  Google Scholar 

  28. Tkatchenko A, Scheffler M (2009) Phys Rev Lett 102:073005

    Article  Google Scholar 

  29. Gritsenko O, Baerends EJ (2006) J Chem Phys 124:1

    Article  Google Scholar 

  30. Dion M, Rydberg H, Schröder E, Langreth DC, Lundqvist BI (2004) Phys Rev Lett 92:246401

    Article  CAS  Google Scholar 

  31. Waller MP, Robertazzi A, Platts JA, Hibbs DE, Williams PA (2006) J Comput Chem 27:491

    Article  CAS  Google Scholar 

  32. Černý J, Hobza P (2005) Phys Chem Chem Phys 7:1624

    Article  Google Scholar 

  33. Cohen AJ, Mori-Sánchez P, Yang W (2008) Science 321:792

    Article  CAS  Google Scholar 

  34. Hohenstein EG, Chill ST, Sherrill CD (2008) J Chem Theory Comput 4:1996

    Article  CAS  Google Scholar 

  35. Jacquemin D, Perpète EA, Ciofini I, Adamo C, Valero R, Zhao Y, Truhlar DG (2010) J Chem Theory Comput 6:2071

    Article  CAS  Google Scholar 

  36. Bouteiller Y, Poully JC, Desfrancois C, Gregoire G (2009) J Phys Chem A 113:6301

    Article  CAS  Google Scholar 

  37. Foster ME, Sohlberg K (2010) Phys Chem Chem Phys 12:307

    Article  CAS  Google Scholar 

  38. Morgado CA, McNamara JP, Hillier IH, Burton NA, Vincent MA (2007) J Chem Theory Comput 3:1656

    Article  CAS  Google Scholar 

  39. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  Google Scholar 

  40. Grimme S (2006) J Comput Chem 27:1787

    Article  CAS  Google Scholar 

  41. Grimme S, Antony J, Ehrlich S, Krieg HA (2010) J Chem Phys 132:154104

    Article  Google Scholar 

  42. Hujo W, Grimme S (2011) Phys Chem Chem Phys 13:13942

    Article  CAS  Google Scholar 

  43. Ehrlich S, Moellmann J, Grimme S (2013) Acc Chem Res 46:916

    Article  CAS  Google Scholar 

  44. Potrzebowski MJ, Assfeld X, Ganicz K, Olejniczak S, Cartier A, Gardiennet C, Tekely P (2003) J Am Chem Soc 125:4223

    Article  CAS  Google Scholar 

  45. Mládek A, Šponer JE, Jurečka P, Banáš P, Otyepka M, Svozil D, Šponer J (2010) J Chem Theory Comput 6:3817

    Article  Google Scholar 

  46. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162:165

    Article  CAS  Google Scholar 

  47. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, John A, Montgomery JJ (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  48. Gordon MS, Schmidt MW (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years; Elsevier, Amsterdam, pp 1167

  49. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  50. Wong MW (1996) Chem Phys Lett 256:391

    Article  CAS  Google Scholar 

  51. Carauta ANM, De Souza V, Hollauer E, Téllez SCA (2004) Spectrochim Acta Part A 60:41

    Article  Google Scholar 

  52. Katsyuba S, Vandyukova E (2003) Chem Phys Lett 377:658

    Article  CAS  Google Scholar 

  53. Correia CF, Balaj PO, Scuderi D, Maitre P, Ohanessian G (2008) J Am Chem Soc 130:3359

    Article  CAS  Google Scholar 

  54. Correia CF, Clavaguera C, Erlekam U, Scuderi D, Ohanessian G (2008) Chem Phys Chem 9:2564

    CAS  Google Scholar 

  55. Scuderi D, Correia CF, Balaj OP, Ohanessian G, Lemaire J, Maitre P (2009) Chem Phys Chem 10:1630

    CAS  Google Scholar 

  56. Withnall R, Andrews L (1987) J Phys Chem 91:784

    Article  CAS  Google Scholar 

  57. Jiang L, Sun ST, Heine N, Liu JW, Yacovitch TI, Wende T, Liu ZF, Neumark DM, Asmis KR (2014) Phys Chem Chem Phys 16:1314

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A.S. thanks the vice-presidency for external relations in Ecole Polytechnique for support from the international internship program, and for a 1-year post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carine Clavaguéra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 590 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Ohanessian, G. & Clavaguéra, C. Accuracy of density functionals in the description of dispersion interactions and IR spectra of phosphates and phosphorylated compounds. J Mol Model 20, 2426 (2014). https://doi.org/10.1007/s00894-014-2426-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2426-y

Keywords

Navigation