Skip to main content
Log in

Molecular structure of cyanidin metal complexes: Al(III) versus Mg(II)

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Metal complexation by anthocyanins is a very efficient mechanism for protecting plants. While Mg is an essential metal for life, typically found bound to anthocyanins, Al interferes with the metabolism of the former. Density functional theory and the polarizable continuum model are used to study cyanin (the simplest anthocyanin bearing a catechol unit) complexes with Mg(II) and Al(III), considering different metal ligand stoichiometries. Results obtained for metal-binding energies indicate that Al(III) complexes are always more stable than those of Mg(II). Furthermore, reaction energies for the metal exchange process show that free Al(III) (hexaaquo complex) is always able to displace Mg(II). This displacement is more favored when the metal ligand ratio decreases. Thus, anthocyanins are implied in suppressing Al(III) toxicity by enabling its accumulation and reducing its migration to ecosystems. The characteristics of Al(III)–cyanidin and Mg(II)–cyanidin bonds are investigated using the quantum theory of atoms in molecules. We find these complexes are more stabilized by ion–dipole electrostatic interactions than by electron pair sharing, as predicted by the Hard and Soft Acids Theory. Globally, two factors increase the covalent character: replacement of Mg(II) by Al(III) and replacement of water by cyanidin ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Harborne JB (1976) Functions of flavonoids in plants. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments. Academic Press, London, pp 736–778

    Google Scholar 

  2. Harborne JB, Grayer R (1988) The anthocyanins, in the flavonoids. In: Harbone JB (ed) Advances in research since 1980. Chapman and Hall, London, pp 1–20

    Google Scholar 

  3. Cody V, Middleton E Jr, Harborne JB (1986) Plant flavonoids in biology and medicine: biochemical, pharmacological, and structure-activity relationships. Alan R. Liss Inc., New York

    Google Scholar 

  4. Harborne JB, Williams CA (1998) Nat Prod Rep 15:631–652

    Article  CAS  Google Scholar 

  5. Harborne JB, Williams CA (1995) Nat Prod Rep 12:639–657

    Article  CAS  Google Scholar 

  6. Wrolstad RE (2000) Anthocyanins. In: Lauro GJ, Francis FJ (eds) Natural food colorants. Science and technology. Marcel Dekker Inc., New York, pp 237–252

    Google Scholar 

  7. Andersen OM (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  8. Robards K, Antolovich M (1997) Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  9. Dangles O, Saito N, Brouillard R (1993) Phytochemistry 34:119–124

    Article  CAS  Google Scholar 

  10. Figueiredo P, Elhabiri M, Saito N, Brouillard R (1996) J Am Chem Soc 118:4788–4793

    Article  CAS  Google Scholar 

  11. Mazzaracchio P, Pifferi P, Kindt M, Munyaneza A, Barbiroli G (2004) Int J Food Sci Technol 39:53–59

    Article  CAS  Google Scholar 

  12. Ito F, Tanaka N, Katsuki A, Fujii T (2002) J Photochem Photobiol A Chem 150:153–157

    Article  CAS  Google Scholar 

  13. Bayer E, Egeter H, Fink A, Nether K, Wegmann K (1996) Angew Chem Int Ed Engl 5:791–798

    Article  Google Scholar 

  14. Elhabiri M, Figueiredo P, Toki K, Saito N, Brouillard R (1997) J Chem Soc Perkin Trans 2:355–362

    Google Scholar 

  15. Matsumoto H (2000) Int Rev Cyt 200:1–46

    Article  CAS  Google Scholar 

  16. Rout GR, Samantaray S, Das P (2001) Agronomie 21:3–21

    Google Scholar 

  17. Bartlett RJ, Riego DC (1972) Plant Soil 37:419–423

    Article  CAS  Google Scholar 

  18. Cao G, Sofic E, Prior RL (1997) Free Radical Biol Med 22(5):749–760

    Article  CAS  Google Scholar 

  19. Shiono M, Matsugaki N, Takeda K (2005) Nature 436:791

    Article  CAS  Google Scholar 

  20. Pilon-Smits E, Pilon M (2002) Crit Rev Plant Sci 21:439–456

    Article  CAS  Google Scholar 

  21. Schreiber HD, Swink AM, Godsey TD (2010) Inorg Biochem 104:732–739

    Article  CAS  Google Scholar 

  22. Kiss T, Hollosi M (2001) The interaction of aluminum with peptides and proteins. In: Exley C (ed) Aluminum and Alzheimer’s disease. Elsevier, Amsterdam

    Google Scholar 

  23. Kiss T, Gajda-Schrantz K, Zatta PF (2006) The Role of Aluminum in Neurotoxic and Neurodegenerative Processes. In: Sigel A, Sigel H, Sigel R (eds) Neurodegenerative diseases and metal ions. Wiley, England, pp 371–393

    Chapter  Google Scholar 

  24. Bader RFW (1990) Atoms in molecules, a quantum theory. Oxford University Press, New York

    Google Scholar 

  25. Bader RFW (1991) A quantum theory of molecular structure and its applications. Chem Rev 91:893–928

    Article  CAS  Google Scholar 

  26. Matta CF, Boyd RJ (2007) The quantum theory of atoms in molecules. Willey, Darmstadt

    Book  Google Scholar 

  27. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford

  28. Labanowsky J, Andelzelm J (1991) Density functional methods in chemistry. Springer, New York

    Book  Google Scholar 

  29. Alcamı M, Mo O, Yañez M (2001) Mass Spectr Rev 20:195–245

    Article  Google Scholar 

  30. Tschinke V, Ziegler T (1991) Theor Chim Acta 81:65–78

    Article  CAS  Google Scholar 

  31. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  32. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  33. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  34. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  35. Mercero JM, Matxain JM, Lopez X, York DM, Largo A, Eriksson LA, Ugalde JM (2005) Int J Mass Spectr 240:37–99

    Article  CAS  Google Scholar 

  36. Kaltsoyannis N, McGrady JE (2004) Principles and applications of density functional theory in inorganic chemistry II. Springer, Berlin

    Book  Google Scholar 

  37. McQuarrie DA (1976) Statistical mechanics. Harper and Row, New York

    Google Scholar 

  38. Cances E, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032–3041

    Article  CAS  Google Scholar 

  39. Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253–260

    Article  CAS  Google Scholar 

  40. Cances E, Mennucci B, Tomasi J (1998) J Chem Phys 109:260–266

    Article  CAS  Google Scholar 

  41. Mercero JM, Matxain JM, Rezabal E, Lopez X, Ugalde JM (2004) Int J Quantum Chem 98:409–424

    Article  CAS  Google Scholar 

  42. Tunega D, Haberhauer G, Gerzabek M, Lischka H (2000) J Phys Chem A 104:6824–6833

    Article  CAS  Google Scholar 

  43. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2006) J Inorg Biochem 100:374–384

    Article  CAS  Google Scholar 

  44. Rezabal E, Mercero JM, Lopez X, Ugalde JM (2007) J Inorg Biochem 101:1192–1200

    Article  CAS  Google Scholar 

  45. Bader RFW (1994) AIMPAC: a suite of programs for the theory of atoms in molecules. Mc Master University, Hamilton

    Google Scholar 

  46. Cortés-Guzmán F, Bader RFW (2005) Coord Chem Rev 249:633–662

    Article  Google Scholar 

  47. Stegmann R, Frenking G (1996) Can J Chem 74:801–809

    Article  CAS  Google Scholar 

  48. Bone RGA, Bader RFW (1996) J Phys Chem 100:10892–10911

    Article  CAS  Google Scholar 

  49. Molina JM, Dobado JA, Heard GL, Bader RFW, Sundberg MR (2001) Theor Chem Acc 105:365–373

    Article  CAS  Google Scholar 

  50. Macchi P, Sironi A (2003) Coord Chem Rev 238:383–412

    Article  Google Scholar 

  51. Macchi P, Proserpio DM, Sironi A (1998) J Am Chem Soc 120:13429–13435

    Article  CAS  Google Scholar 

  52. Fradera X, Austen MA, Bader RFW (1999) J Phys Chem A 103:304–314

    Article  CAS  Google Scholar 

  53. Pearson RG (1963) J Am Chem Soc 85:3533–3539

    Article  CAS  Google Scholar 

  54. Pearson RG (1966) Science 151:172–177

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank “Centro de Supercomputación de Galicia” (CESGA) for free access to its computational facilities and the Galician Government for funding this research through project INCITE09E1R3141091ES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Mosquera.

Additional information

Published as part of the special issue celebrating theoretical and computational chemistry in Spain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estévez, L., Otero, N. & Mosquera, R.A. Molecular structure of cyanidin metal complexes: Al(III) versus Mg(II). Theor Chem Acc 128, 485–495 (2011). https://doi.org/10.1007/s00214-010-0829-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00214-010-0829-0

Keywords

Navigation