Skip to main content
Log in

Wavelet Analysis of Forbush Decreases at High-Latitude Stations During Geomagnetic Disturbances

  • Published:
Solar Physics Aims and scope Submit manuscript

A Correction to this article was published on 20 May 2022

This article has been updated

Abstract

We analyzed the behavior of Cosmic-Ray (CR) intensity during five geomagnetic events over 9-day periods of varying disturbance, using ground-based CR measurements from the Bartol Research Institute neutron-monitor program that occurred on 25th October – 2nd November 2003, 23rd – 31st July 2004, 13th – 21st May 2005, 13th – 21st Mar 2015, and 19th – 27th June 2015. A nine-day time frame gives us a reasonable time interval for data analysis before, during, and after the main event(s). These events have been deliberately chosen, intending to track Forbush Decreases (FDs) at high-latitude stations following geomagnetic storms of different intensity and duration from the perspectives of their origin and geoeffectiveness. FDs are observed when the magnetic fields entangled in and around a Coronal Mass Ejection (CME) exert a deflecting effect on galactic cosmic radiation, resulting in a sudden reduction in their intensities. The results revealed that the CR intensity dropped by 4 – 17% in the chosen events. The FDs examined were not typical, with multistage decrement during the event period. Furthermore, we have used the Discrete Wavelet Transform (DWT) technique to detect a singularity on the CR intensity at the stations described. The first three decomposition levels have proved sufficient to isolate the transients in CR intensity in conjunction with varying nature and intensities, ranging from intense to superintense geomagnetic storms to a high-intensity long-duration continuous auroral electrojet activity (HILDCAA) event. Finally, the findings of the detrended crosscorrelation technique showed a good association of percentage decrease in cosmic-ray intensity with the Dst index during the process. No noticeable lag has been found between the parameters discussed, which indicates a strong correlation between the IMF-Bz and the Dst index and the FD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Change history

  • 25 May 2022

    The original online version of this article was revised: Table 1 was replaced and a typographical error corrected.

  • 20 May 2022

    A Correction to this paper has been published: https://doi.org/10.1007/s11207-022-02000-w

References

  • Adhikari, B., Chapagain, N.P.: 2015, Polar cap potential and merging electric field during high-intensity long duration continuous auroral activity. J. Nepal Phys. Soc. 3(1), 6. DOI.

    Article  Google Scholar 

  • Adhikari, B., Dahal, S., Chapagain, N.P.: 2017, Study of field-aligned current (FAC), interplanetary electric field component (Ey), interplanetary magnetic field component (Bz), and northward (x) and eastward (y) components of geomagnetic field during supersubstorm. Earth Space Sci. 4(5), 257. DOI.

    Article  ADS  Google Scholar 

  • Alex, S., Mukherjee, S., Lakhina, G.S.: 2006, Geomagnetic signatures during the intense geomagnetic storms of 29 October and 20 November 2003. J. Atmos. Solar-Terr. Phys. 68(7), 769. DOI.

    Article  ADS  Google Scholar 

  • Arunbabu, K.P., Antia, H.M., Dugad, S.R., Gupta, S.K., Hayashi, Y., Kawakami, S., Mohanty, P.K., Nonaka, T., Oshima, A., Subramanian, P.: 2013, High-rigidity Forbush decreases: Due to CMEs or shocks? Astron. Astrophys. 555, A139. DOI.

    Article  ADS  Google Scholar 

  • Astafyeva, E., Zakharenkova, I., Hozumi, K., Alken, P., Coïsson, P., Hairston, M.R., Coley, W.R.: 2018, Study of the equatorial and low-latitude electrodynamic and ionospheric disturbances during the 22–23 June 2015 geomagnetic storm using ground-based and spaceborne techniques. J. Geophys. Res. Space Phys. 123(3), 2424. DOI.

    Article  ADS  Google Scholar 

  • Barnett, T.P.: 1991, The interaction of multiple time scales in the tropical climate system. J. Climate 4(3), 269. DOI.

    Article  ADS  Google Scholar 

  • Belov, A.: 2000, Large scale modulation: View from the Earth. Cosmic Rays Earth 93, 79. DOI.

    Article  ADS  Google Scholar 

  • Belov, A.V.: 2008, Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc. Int. Astron. Union 4(S257), 439. DOI.

    Article  Google Scholar 

  • Belov, A.V., Eroshenko, E.A., Yanke, V.G.: 1997, Modulation effects in 1991-1994 years. In: Correlated Phenomena at the Sun, in the Heliosphere and in Geospace, ESA SP-415, ESTEC, Noordwijk, 463.

    Google Scholar 

  • Belov, A.V., Eroshenko, E.A., Yanke, V.G.: 1999, Cosmic ray effects caused by great disturbances of the interplanetary medium in 1990-1996. In: Proc. 26th Int. Cosmic Ray Conf. 6, 431.

    Google Scholar 

  • Cane, H.V.: 2000, Coronal mass ejections and Forbush decreases. Space Sci. Rev. 93(1/2), 55. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Von Rosenvinge, T.T.: 1996, Cosmic ray decreases: 1964–1994. J. Geophys. Res. Space Phys. 101(A10), 21561.

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G., Wibberenz, G.: 1995, The response of energetic particles to the presence of ejecta material. In: Proc. 24th Int. Cosmic Ray Conf. 4, 377.

    Google Scholar 

  • Chapagain, N.P., Taylor, M.J., Makela, J.J., Duly, T.M.: 2012, Equatorial plasma bubble zonal velocity using 630.0 nm airglow observations and plasma drift modeling over Ascension Island. J. Geophys. Res. 117(A6), A06316. DOI.

    Article  ADS  Google Scholar 

  • Chauhan, M.L., Shrivastava, S.K., Richharia, M.K., Jain, M., Jain, A.: 2008, Study of two major Forbush decrease events of 2005. In: Proceedings of the 30th International Cosmic Ray Conference, Mexico City 1(SH), 307.

    Google Scholar 

  • Chi, Y., Shen, C., Luo, B., Wang, Y., Xu, M.: 2018, Geoeffectiveness of stream interaction regions from 1995 to 2016. Space Weather 16(12), 1960. DOI.

    Article  ADS  Google Scholar 

  • Chui, C.: 1992, An Introduction to Wavelets 1, Academic Press, New York.

    Book  Google Scholar 

  • Chui, C.: 1994, Wavelets Theory, Algorithms and Applications, Academic Press, San Diego, 5.

    Google Scholar 

  • Dashora, N., Sharma, S., Dabas, R.S., Alex, S., Pandey, R.: 2009, Large enhancements in low latitude total electron content during 15 May 2005 geomagnetic storm in Indian zone. Ann. Geophys. 27, 1803. DOI.

    Article  ADS  Google Scholar 

  • Daubechies, I.: 1990, The wavelet transforms, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Daubechies, I.: 1992, Ten lectures on wavelets. In: CBMS-NSF Regional Conference, Series in Applied Mathematics 61, SIAM, Philadelphia.

    Google Scholar 

  • Davis, C.J., Wild, M.N., Lockwood, M., Tulunay, Y.K.: 1997, Ionospheric and geomagnetic responses to changes in IMF B z: A superposed epoch study. Ann. Geophys. 15(2), 217.

    ADS  Google Scholar 

  • Domingues, M.O., Mendes, O., da Costa, A.M.: 2005, Wavelet techniques in atmospheric sciences. Adv. Space Res. 35(5), 831. DOI.

    Article  ADS  Google Scholar 

  • Du, D., Xu, W.Y., Zhao, M.X., Chen, B., Lu, J.Y., Yang, G.L.: 2010, A sensitive geomagnetic activity index for space weather operation. Space Weather. 8, S12006. DOI.

    Article  ADS  Google Scholar 

  • Dungey, J.W.: 1961, Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6(2), 47.

    Article  ADS  Google Scholar 

  • Fenton, A.G., McCracken, K.G., Rose, D.C., Wilson, B.G.: 1959, The onset times of Forbush-type cosmic ray intensity decrease. Can. J. Phys. 37(9), 970. DOI.

    Article  ADS  Google Scholar 

  • Forbush, S.E.: 1938, On worldwide changes in cosmic-ray intensity. Phys. Rev. 54(12), 975. DOI.

    Article  ADS  Google Scholar 

  • Foufoula-Georgiou, E.K., Kumar, P. (eds.): 1995, Wavelet in Geophysics 4, Academic Press, New York, 373 pp.

    Google Scholar 

  • Gao, R.X., Yan, R.: 2011, From Fourier transform to wavelet transform: A historical perspective. In: Wavelets, Springer, Boston, 17. DOI.

    Chapter  Google Scholar 

  • Gonzalez, W.D., Josely, J.A., Kamide, Y., Korehi, H.W., Rostoker, G., Tsuruntani, B.T., Vasylianas, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI.

    Article  ADS  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Brum, C.G.M., Vieira, L.E.A., Santolik, O.: 2015, Relativistic electron acceleration during HILDCAA events: Are precursor CIR magnetic storms important? Earth Planets Space 67(1), 1. DOI.

    Article  Google Scholar 

  • Heber, B., Sanderson, T.R., Zhang, M.: 1999, Corotating interaction regions. Adv. Space Res. 23, 567. DOI.

    Article  ADS  Google Scholar 

  • Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 454(1971), 903. DOI.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Huang, D.H., Hu, H.Q., Zhang, J.L., Lu, H., Zhang, D.L., Xue, B.S., Lu, J.T.: 2017, Study on 2015 June 22 Forbush decrease with the muon telescope in Antarctic. arXiv preprint. arXiv.

  • Joselyn, J.A.: 1986, In: Kamide, F., Slavin, J.A. (eds.) Proceedings of Chapmaan Conference on Solar Wind Magnetosphere Coupling 127, Terra Sci., Tokyo.

    Google Scholar 

  • Kane, R.P.: 1977, A comparative study of geomagnetic, interplanetary, and cosmic ray storms. J. Geophys. Res. 82(4), 561. DOI.

    Article  ADS  Google Scholar 

  • Karki, M., Silwal, A., Chapagain, N.P., Poudel, P., Gautam, S.P., Mishra, R.K., Adhikari, B., Migoya-Orue, Y.O.: 2020, GPS observations of ionospheric TEC variations during 2015 Mw 7.8 Nepal Earthquake. Preprint. DOI.

  • Katz, R.W.: 1988, Use of cross correlations in the search for teleconnections. J. Climatol. 8(3), 241. DOI.

    Article  Google Scholar 

  • Khanal, K., Adhikari, B., Chapagain, N.P., Bhattarai, B.: 2019, HILDCAA-related GIC and possible corrosion Hazard in underground pipelines: A comparison based on wavelet transform. Space Weather 17(2), 238. DOI.

    Article  ADS  Google Scholar 

  • Kichigin, G.N., Kravtsova, M.V., Sdobnov, V.E.: 2018, Spatial-energy characteristics of cosmic rays and parameters of magnetospheric current systems in March and June 2015. Geomagn. Aeron. 58, 586. DOI.

    Article  ADS  Google Scholar 

  • Klausner, V., González, A.O., Domingues, M.O., Mendes, O., Papa, A.R.R.: 2014a, Study of local regularities in solar wind data and ground magnetograms. J. Atmos. Solar-Terr. Phys. 112, 10. DOI.

    Article  ADS  Google Scholar 

  • Klausner, V., Mendes, O., Domingues, M.O., Papa, A.R., Tyler, R.H., Frick, P., Kherani, E.A.: 2014b, Advantage of wavelet technique to highlight the observed geomagnetic perturbations linked to the Chilean tsunami (2010). J. Geophys. Res. Space Phys. 119(4), 3077. DOI.

    Article  ADS  Google Scholar 

  • Klausner, V., Domingues, M.O., Mendes, O., Papa, A.R.R.: 2011, Tsunami effects on the Z component of the geomagnetic field. J. Atmos. Solar-Terr. Phys. arXiv [physics.space-ph].

  • Klausner, V., Gonzalez, A.O., Domingues, M.O., Papa, A.R.: 2020, Orthogonal discrete wavelet decomposition: Part 2. Analysis of magnetogram data.

  • Kravtsova, M.V., Sdobnov, V.E.: 2017, Analyzing the June 2015 Forbush effect by the spectrographic global survey. Bull. Russ. Acad. Sci., Phys. 81, 177. DOI.

    Article  Google Scholar 

  • Kuwabara, T., Bieber, J.W., Evenson, P., Munakata, K., Yasue, S., Kato, C., Fushishita, A., Tokumaru, M., Duldig, M.L., Humble, J.E., Silva, M.R., Dal Lago, A., Schuch, N.J.: 2009, Determination of interplanetary coronal mass ejection geometry and orientation from ground-based observations of galactic cosmic rays. J. Geophys. Res. Space Phys. 114(A5), A05109. DOI.

    Article  ADS  Google Scholar 

  • Le Roux, J.A., Potgieter, M.S.: 1991, The simulation of Forbush decreases with time-dependent cosmic-ray modulation models of varying complexity. Astron. Astrophys. 243, 531.

    ADS  Google Scholar 

  • Lee, S., Oh, S., Yi, Y.: 2013, Simultaneity of Forbush decrease events observed at middle-latitude neutron monitors. J. Geophys. Res. Space Phys. 118(2), 608. DOI.

    Article  ADS  Google Scholar 

  • Lee, S., Oh, S., Yi, Y., Evenson, P., Jee, G., Choi, H.: 2015, Long-term statistical analysis of the simultaneity of Forbush decrease events at middle latitudes. J. Astron. Space Sci. 32(1), 33. DOI.

    Article  ADS  Google Scholar 

  • Li, G., Ning, B., Hu, L., Liu, L., Yue, X., Wan, W., Zhao, B., Igarashi, K., Kubota, M., Otsuka, Y., Xu, J.S.: 2010, Longitudinal development of low-latitude ionospheric irregularities during the geomagnetic storms of July 2004. J. Geophys. Res. 115, A04304. DOI.

    Article  ADS  Google Scholar 

  • Liou, K., Newell, P.T., Meng, C.L.: 2001, Seasonal effect on auroral particle acceleration and precipitation. J. Geophys. Res. 106(A4), 551. DOI.

    Article  Google Scholar 

  • Lockwood, J.: 1971, Forbush decreases in the cosmic radiation. Space Sci. Rev. 12(5), 658. DOI.

    Article  ADS  Google Scholar 

  • Mallat, S.G.: 1989, Multiresolution approximations and wavelet orthonormal bases of \(L^{2}\) (\(R\)). Trans. Am. Math. Soc. 315(1), 69. DOI.

    Article  MATH  Google Scholar 

  • Mallat, S.G., Falzon, F.: 1997, Understanding wavelet image compression. In: Wavelet Applications IV. International Society for Optics and Photonics 3078, 74.

    Google Scholar 

  • Mathpal, C., Prasad, L., Pokharia, M., Bhoj, C.: 2018, Study of cosmic ray intensity in relation to the interplanetary magnetic field and geomagnetic storms for solar cycle 24. Astrophys. Space Sci. 363(8), 177. DOI.

    Article  ADS  Google Scholar 

  • Mendes, O., Domingues, M.O., da Costa, A.M., Clúa de Gonzalez, A.L.: 2005, Wavelet analysis applied to magnetograms: Singularity detections related to geomagnetic storms. J. Atmos. Solar-Terr. Phys. 67(17–18), 1827. DOI.

    Article  ADS  Google Scholar 

  • Menke, W., Menke, J.: 2012 Environmental Data Analysis with MatLab, Academic Press, San Diego, 1. ISBN 9780123918864. DOI.

    Book  MATH  Google Scholar 

  • Mewaldt, R.A.: 2010, Cosmic Rays. California Institute of Technology. http://www.srl.caltech.edu/personnel/dick/cos_encyc.html.

  • Meyer, Y.: 1990, Ondelettes Et Operateurs, Hermann, Paris.

    MATH  Google Scholar 

  • Mishra, R.K., Adhikari, B., Chapagain, N.P., Baral, R., Das, P.K., Klausner, V., Sharma, M.: 2020, Variation on solar wind parameters and total electron content over middle-to low-latitude regions during intense geomagnetic storms. Radio Sci. 55(11), e2020RS007129. DOI.

    Article  ADS  Google Scholar 

  • Momani, M., Al Smadi, T., al-taweel, F., Ghaidan, K.: 2011, GPS ionospheric total electron content and scintillation measurements during the October 2003 magnetic storm. Am. J. Eng. Appl. Sci. 4(2), 301. DOI.

    Article  Google Scholar 

  • Nava, B., Rodríguez-Zuluaga, J., AlazoCuartas, K., Kashcheyev, A., Migoya-Orué, Y., Radicella, S.M., Amory-Mazaudier, C., Fleury, R.: 2016, Middle- and low-latitude ionosphere response to 2015 St. Patrick’s Day geomagnetic storm. J. Geophys. Res. Space Phys. 121(4), 3421. DOI.

    Article  ADS  Google Scholar 

  • Ngwira, C.M., McKinnell, L.A., Cilliers, P.J., Coster, A.J.: 2012, Ionospheric observations during the geomagnetic storm events on 24–27 July 2004: Long-duration positive storm effects. J. Geophys. Res. 117, A00L02. DOI.

    Article  Google Scholar 

  • Oh, S.Y.: 2008, Magnetic cloud and its interplanetary shock sheath as a modulator of the cosmic ray intensity. J. Astron. Space Sci. 25(2), 149. DOI.

    Article  ADS  Google Scholar 

  • Oh, S.Y., Yi, Y.: 2009, Statistical reality of globally non simultaneous Forbush decrease events. J. Geophys. Res. Space Phys. 114(A11), A11102. DOI.

    Article  ADS  Google Scholar 

  • Ojeda, A.G., Correa, M.S., Klausner, V., Domingues, M.O., Mendes, O. Jr., Papa, A.R.R.: 2009, Orthogonal discrete wavelet decomposition: Part 1. Using ACE satellite data. In: 8th Brazilian Conference on Dynamics, Control and Applications, May 18–22. Google Scholar link: https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Orthogonal+discrete+wavelet+decomposition%3A+Part+1.+Using+ACE+satellite+data.&btnG=.

    Google Scholar 

  • Ojeda, A.G., Junior, O.M., Menconi, V.E., Domingues, M.O.: 2014, Daubechies wavelet coefficients: A tool to study interplanetary magnetic field fluctuations. Geofís. Int. 53(2), 101. DOI.

    Article  Google Scholar 

  • Patel, K., Singh, A., Singh, S.B., Singh, A.K.: 2019, Causes responsible for intense and severe storms during the declining phase of Solar Cycle 24. J. Astrophys. Astron. 40(1), 4. DOI.

    Article  ADS  MathSciNet  Google Scholar 

  • Pedatella, N.M., Forbes, J.M., Lei, J., Thayer, J.P., Larson, K.M.: 2008, Changes in the longitudinal structure of the low-latitude ionosphere during the July 2004 sequence of geomagnetic storms. J. Geophys. Res. 113, A11315. DOI.

    Article  ADS  Google Scholar 

  • Poudel, P., Parajuli, N., Gautam, A., Sapkota, D., Adhikari, H., Adhikari, B., Silwal, A., Gautam, S.P., Karki, M., Mishra, R.K.: 2020, Wavelet and cross-correlation analysis of relativistic electron flux with sunspot number, solar flux, and solar wind parameters. J. Nepal Phys. Soc. 6(2), 104. DOI.

    Article  Google Scholar 

  • Puccio, L., Montefusco, L., Chui, C.K.: 1994, Wavelets: Theory, Algorithms, and Applications 5, Academic Press, New York.

    MATH  Google Scholar 

  • Raghav, A., Shaikh, Z., Bhaskar, A., Datar, G., Vichare, G.: 2017, Forbush decrease: A new perspective with classification. Solar Phys. 292(8), 99. DOI.

    Article  ADS  Google Scholar 

  • Richardson, I.G.: 2004, Energetic particles and corotating interaction regions in the solar wind. Space Sci. Rev. 111, 267.

    Article  ADS  Google Scholar 

  • Ruskai, M.B., Beylkin, G., Coifman, R., Daubechies, I., Mallat, S., Meyer, Y., Raphael, L. (eds.): 1992, Wavelets and Their Applications, Jones and Bartlett, Boston.

    MATH  Google Scholar 

  • Samara, E., Smponias, A., Lytrosyngounis, I., Lingri, D., Mavromichalaki, H., Sgouropoulos, C.: 2018, Unusual cosmic ray variations during the Forbush decreases of June 2015. Solar Phys. 293(4), 67. DOI.

    Article  ADS  Google Scholar 

  • Sharma, S., Galav, P., Dashora, N., Pandey, R.: 2011, Longitudinal study of the ionospheric response to the geomagnetic storm of 15 May 2005 and manifestation of TADs. Ann. Geophys. 29(6), 1063. DOI.

    Article  ADS  Google Scholar 

  • Sifuzzaman, M., Islam, M.R., Ali, M.Z.: 2009, Application of wavelet transform and its advantages compared to Fourier transform. J. Phys. Sci. 13, 121.

    Google Scholar 

  • Silwal, A., Gautam, S.P., Poudel, P., Karki, M., Adhikari, B., Chapagain, N.P., Mishra, R.K., Ghimire, B.D., Migoya-Orue, Y.: 2021, GPS observations of ionospheric TEC variations during the 15 January 2010 and 21 June 2020 solar eclipse. Radio Sci. 56(5), e2020RS007215. DOI.

    Article  ADS  Google Scholar 

  • Singh, A.K., Singh, D., Singh, R.P.: 2011, Impact of galactic cosmic rays on Earth’s atmosphere and human health. Atmos. Environ. 45(23), 3806. DOI.

    Article  ADS  Google Scholar 

  • Singh, P.K., Tripathi, L., Singh, A., Tiwari, J., Tiwari, A.K.: 2008, Solar winds streams and their impact on cosmic ray intensity decreases in year 2003. Rom. J. Phys. 53(7–8), 917.

    Google Scholar 

  • Strang, G.: 1993, Wavelet transforms versus Fourier transforms. Bull. Am. Math. Soc. 28(2), 288. DOI.

    Article  MathSciNet  MATH  Google Scholar 

  • Strang, G., Nguyen, T.: 1996, Wavelet and Filters Bank, Wellesley-Cambridge, Cambridge.

    Google Scholar 

  • Tomova, D., Velinov, P.I., Tassev, Y.: 2017, Comparison between extreme solar activity during periods March 15-17, 2015 and September 4-10, 2017 at different phases of solar cycle 24. Bulg. Acad. Sci., Space Res. Technol. Inst., Aerosp. Res. Bulgaria 29, 10.

    Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1987, The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains. Planet. Space Sci. 35(4), 405. DOI.

    Article  ADS  Google Scholar 

  • Usoro, A.E.: 2015, Some basic properties of cross-correlation functions of n-dimensional vector time series. J. Stat. Econ. Methods 4(1), 63.

    Google Scholar 

  • Usoskin, I.G., Braun, I., Gladysheva, O.G., Hörandel, J.R., Jämsén, T., Kovaltsov, G.A., Starodubtsev, S.A.: 2008, Forbush decreases of cosmic rays: Energy dependence of the recovery phase. J. Geophys. Res. Space Phys. 113(A7), A07102. DOI.

    Article  ADS  Google Scholar 

  • Xu, W.H., Xing, Z.Y., Balan, N., Liang, L.K., Wang, Y.L., Zhang, Q.H., Sun, Z.D., Li, W.B.: 2021, Spectral analysis of geomagnetically induced current and local magnetic field during the 17 March 2013 geomagnetic storm. DOI

  • Yuan, N., Fu, Z., Zhang, H., Piao, L., Xoplaki, E., Luterbacher, J.: 2015, Detrended partial-cross-correlation analysis: A new method for analyzing correlations in complex system. Sci. Rep. 5(1), 1.

    Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J.C., Nitta, N.V., Poomvises, W., Thompson, B.J., Wu, C.C., Yashiro, S.: 2007 Oct, Solar and interplanetary sources of major geomagnetic storms (Dst\(\leq -100\) nT) during 1996–2005. J. Geophys. Res. Space Phys., 112(A10). DOI.

  • Zhao, L.L., Zhang, H.: 2016, Transient galactic cosmic-ray modulation during solar cycle 24: A comparative study of two prominent Forbush decrease events. Astrophys. J. 827(1), 13. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgment

Geomagnetic index Dst and solar-wind parameter IMF-Bz data were obtained from the OMNI (http://omniweb.gsfc.nasa.gov/) site. In addition, cosmic-ray intensity data of five different high-latitude stations, corrected for pressure and efficiency, were downloaded from the Bartol Research Institute Neutron Monitor Data site, supported by the National Science Foundation (http://neutronm.bartol.udel.edu/). We want to thank staff members of NASA and the Bartol Research Institute for making the data available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Adhikari.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Table 1 was replaced and a typographical error corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Silwal, A., Baral, R. et al. Wavelet Analysis of Forbush Decreases at High-Latitude Stations During Geomagnetic Disturbances. Sol Phys 297, 26 (2022). https://doi.org/10.1007/s11207-022-01948-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-022-01948-z

Keywords

Navigation