Skip to main content
Log in

Variability of relativistic electron flux (E > 2 MeV) during geo-magnetically quiet and disturbed days: a case study

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

We analyzed the relativistic electron fluxes (E > 2 MeV) during five different geomagnetic storms: moderate, intense, super-intense, ICME HILDCAA (High-Intensity Long Duration Continuous Aurora Activity), non-storm HILDCAA and a geo-magnetically quiet period. We have opted for continuous wavelet (CWT) analysis techniques to comprehend the periodicity and dynamics of relativistic electron fluxes during storm conditions. The findings of CWT revealed the smooth and periodic trend of relativistic electrons during geo-magnetically quiet periods of 25 January 2007. In contrast, the dominant frequencies associated with the oscillations of relativistic electrons are observed during the recovery phase of the geomagnetic storms. A noteworthy finding of the study is the discrepancies in key periodicities at a lower scale connected with the sudden enhancement of the relativistic electron flux during HILDCAAs and other geomagnetic storms. While a key periodicity at a lower scale is observed at moderate, intense and super intense storms during the recovery phases of the storms, the HILDCAAs events exhibit high-frequency behaviour during both main and recovery phases. Our result substantiates that a geomagnetic storm is not the primary factor that pumps up the radiation belt. The geomagnetic storms can deplete, enhance or cause little effect on the outer radiation belt. To be precise, it exhibits event-specific behaviour. Additionally, we performed Multiresolution Analysis (MRA) to observe temporal distribution characteristics of relativistic electron flux using wavelet decomposition and reconstruction. MRA revealed the diurnal pattern of relativistic electrons flux for the quiet period of the magnetosphere, as depicted by the details and approximations coefficients. On the other hand, the relativistic electron enhancements during several geomagnetic storms are closely related to the presence of high-speed solar wind streams and southward IMF during the recovery phase of a geomagnetic storm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adhikari, B., Chapagain, N.P.: Polar cap potential and merging electric field during high intensity long duration continuous auroral activity. J. Nepal Phys. Soc. 3(1), 6–17 (2015)

    Article  Google Scholar 

  • Adhikari, B., Baruwal, P., Chapagain, N.P.: Analysis of super substorm events with reference to polar cap potential and polar cap index. Earth Space Sci. 4(1), 2–15 (2017a)

    Article  Google Scholar 

  • Adhikari, B., Adhikari, R., Chapagain, N.P., Sapkota, N., Dahal, S., Pandit, D.: Daily, seasonal and monthly variation of middle-low latitudes magnetic field during low solar activity. Discovery, 53(255), 181–190 (2017b)

    Google Scholar 

  • Adhikari, B., Dahal, S., Sapkota, N., Baruwal, P., Bhattarai, B., Khanal, K., Chapagain, N.P.: Field-aligned and polar cap potential and geomagnetic disturbances: a review of cross-correlation analysis. Earth Space Sci. 5(9), 440–455 (2018). https://doi.org/10.1029/2018EA000392

    Article  Google Scholar 

  • Anderson, B.R., Millan, R.M., Reeves, G.D., Friedel, R.H.W.: Acceleration and loss of relativistic electrons during small geomagnetic storms. Geophys. Res. Lett. 42, 10,113–10,119 (2015). https://doi.org/10.1002/2015GL066376

    Article  Google Scholar 

  • Baker, D.N., Mason, G.M., Figueroa, O., Colon, G., Watzin, J.G., Aleman, R.M.: An overview of the solar, anomalous, and magnetospheric particle explorer (SAMPEX) mission. IEEE Trans. Geosci. Remote Sens. 31(3), 531–541 (1993)

    Article  Google Scholar 

  • Borovsky, J.E., Denton, M.H.: Differences between CME-driven storms and CIR-driven storms. J. Geophys. Res. 111, A07S08 (2005). https://doi.org/10.1029/2005JA011447

    Article  Google Scholar 

  • Borovsky, J.E., Thomsen, M.F., Elphic, R.C.: The driving of the plasma sheet by the solar wind. J. Geophys. Res. Space Phys. 103(A8), 17617–17639 (1998)

    Article  Google Scholar 

  • Daubechies, I.: Recent results in wavelet applications. In: Wavelet Applications V, vol. 3391, pp. 2–9. SPIE (1998)

    Chapter  Google Scholar 

  • Domingues, M.O., Mendes, O. Jr, da Costa, A.M.: On wavelet techniques in atmospheric sciences. Adv. Space Res. 35(5), 831–842 (2005)

    Article  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, V., Tsrurtani, B.T., Vasyliunias, V.M.: What is a geomagnetic storm. J. Geophys. Res. 99, 5771 (1994)

    Article  Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Gonzalez, W.D., Echer, E., Gonzalez, A.L., Grande, M., Soraas, F.: ICME and CIR storms with particular emphasis on HILDCAA events. In: ILWS Workshop, pp. 19–20 (2006)

    Google Scholar 

  • Guarnieri, F.L., Tsurutani, B.T., Vieira, L.E., Hajra, R., Echer, E., Mannucci, A.J., Gonzalez, W.D.: A correlation study regarding the AE index and ACE solar wind data for Alfvénic intervals using wavelet decomposition and reconstruction. Nonlinear Process. Geophys. 25(1), 67–76 (2018)

    Article  Google Scholar 

  • Hajra, R., Echer, E., Tsurutani, B.T., Gonzalez, W.D.: Solar cycle dependence of high-intensity, long-duration, continuous ae activity (HILDCAA) events. J. Geophys. Res. 118(9), 5626–5638 (2013)

    Article  Google Scholar 

  • Hajra, R., Tsurutani, B.T., Echer, E., Gonzalez, W.D., Santolik, O.: Relativistic (E > 0.6, >2.0, and >4.0 MeV) electron acceleration at geosynchronous orbit during high-intensity, long-duration, continuous AE activity (HILDCAA) events. Astrophys. J. 799(1), 39 (2015)

    Article  Google Scholar 

  • Hietala, H., Kilpua, E.K.J., Turner, D.L., Angelopoulos, V.: Depleting effects of ICME-driven sheath regions on the outer electron radiation belt. Geophys. Res. Lett. 41, 2258–2265 (2014). https://doi.org/10.1002/2014GL059551

    Article  Google Scholar 

  • Iles, R.H.A., Fazakerley, A.N., Johnstone, A.D., Meredith, N.P., Bühler, P.: The relativistic electron response in the outer radiation belt during magnetic storms. In: Annales Geophysicae, vol. 20, No. 7, pp. 957–965. Copernicus GmbH (2002)

    Google Scholar 

  • Iyemori, T.: Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations. J. Geomagn. Geoelectr. 42, 1249–1265 (1990). https://doi.org/10.5636/jgg.42.1249

    Article  Google Scholar 

  • Kennel, C.F., Edmiston, J.P., Hada, T.: A quarter century of collisionless shock research. In: Collisionless Shocks in the Heliosphere: A Tutorial Review, vol. 34, pp. 1–36 (1985)

    Google Scholar 

  • Khanal, K., et al.: HILDCAAs related GIC and possible corrosion Hazard in underground pipelines: a comparison based on wavelet transform. Space Weather 17(2), 238–251 (2019)

    Article  Google Scholar 

  • Kilpua, E.K.J., Hietala, H., Turner, D.L., Koskinen, H.E.J., Pulkkinen, T.I., Rodriguez, J.V., et al.: Unraveling the drivers of the storm time radiation belt response. Geophys. Res. Lett. 42(9), 3076–3084 (2015)

    Article  Google Scholar 

  • Kumar, P., Foufoula-Georgiou, E.: Wavelet analysis for geophysical applications. Rev. Geophys. 35(4), 385–412 (1997)

    Article  Google Scholar 

  • Lawrence, D.J., Thomsen, M.F., Borovsky, J.E., McComas, D.J.: Measurements of early and late time plasmasphere refilling as observed from geosynchronous orbit. J. Geophys. Res. Space Phys. 104(A7), 14691–14704 (1999)

    Article  Google Scholar 

  • Lemaire, J.F.: The effect of a southward interplanetary magnetic field on Stormer’s allowed regions. Adv. Space Res. 31(5), 1131–1153 (2012)

    Article  Google Scholar 

  • Li, X., Temerin, M., Baker, D.N., Reeves, G.D.: Behavior of MeV electrons at geosynchronous orbit during last two solar cycles. J. Geophys. Res. 116, A11207 (2011). https://doi.org/10.1029/2011JA016934

    Article  Google Scholar 

  • Lyatsky, W., Khazanov, G.V.: Effect of solar wind density on relativistic electrons at geosynchronous orbit. Geophys. Res. Lett. 35(3), L03109 (2008)

    Article  Google Scholar 

  • Lyatsky, W., Tan, A., Khazanov, G.V.: A simple analytical model for subauroral polarization stream (SAPS). Geophys. Res. Lett. 33(19), L19101 (2006)

    Article  Google Scholar 

  • Manyilizu, M., et al.: Interannual variability of sea surface temperature and circulation in the tropical western Indian Ocean. Afr. J. Mar. Sci. 36(2), 233–252 (2014)

    Article  Google Scholar 

  • Markovic, D., Koch, M.: Wavelet and scaling analysis of monthly precipitation extremes in Germany in the 20th century: interannual to interdecadal oscillations and the North Atlantic Oscillation influence. Water Resour. Res. 41(9), W09420 (2005)

    Article  Google Scholar 

  • Mendes, O. Jr, Domingues, M.O., Da Costa, A.M., De Gonzalez, A.L.C.: Wavelet analysis applied to magnetograms: singularity detections related to geomagnetic storms. J. Atmos. Sol.-Terr. Phys. 67(17–18), 1827–1836 (2005)

    Article  Google Scholar 

  • Meredith, N.P., Cain, M., Horne, R.B., Thorne, R.M., Summers, D., Anderson, R.R.: Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods. J. Geophys. Res. Space Phys. 108(A6), 1248 (2003). https://doi.org/10.1029/2002JA009764

    Article  Google Scholar 

  • Meredith, N.P., Horne, R.B., Lam, M.M., Denton, M.H., Borovsky, J.E., Green, J.C.: Energetic electron precipitation during high-speed solar wind stream driven storms. J. Geophys. Res. 116, A05223 (2011). https://doi.org/10.1029/2010JA016293

    Article  Google Scholar 

  • Meyer, Y., Roques, S.: Progress in Wavelet Analysis and Applications (1993)

    MATH  Google Scholar 

  • Millan, R.M., Thorne, R.M.: Review of radiation belt relativistic electron losses. J. Atmos. Sol.-Terr. Phys. 69, 362–377 (2007). https://doi.org/10.1016/j.jastp.2006.06.019

    Article  Google Scholar 

  • Miyoshi, Y., Morioka, A., Misawa, H., Obara, T., Nagai, T., Kasahara, Y.: Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations. J. Geophys. Res. 108, 1004 (2003). https://doi.org/10.1029/2001JA007542

    Article  Google Scholar 

  • Moya, P.S., Pinto, V.A., Sibeck, D.G., Kanekal, S.G., Baker, D.N.: On the effect of geomagnetic storms on relativistic electrons in the outer radiation belt: Van Allen Probes observations. J. Geophys. Res. 122(11), 11,100–11,108 (2017). https://doi.org/10.1002/2017JA024735

    Article  Google Scholar 

  • Murphy, K.R., Watt, C.E.J., Mann, I.R., Jonathan Rae, I., Sibeck, D.G., Boyd, A.J., et al.: The global statistical response of the outer radiation belt during geomagnetic storms. Geophys. Res. Lett. 45(9), 3783–3792 (2017). https://doi.org/10.1002/2017GL076674

    Article  Google Scholar 

  • Murphy, K.R., Mann, I.R., Sibeck, D.G., Rae, I.J., Watt, C.E.J., Ozeke, L.G., et al.: A framework for understanding and quantifying the loss and acceleration of relativistic electrons in the outer radiation belt during geomagnetic storms. Space Weather 18, e2020SW002477 (2020). https://doi.org/10.1029/2020SW002477

    Article  Google Scholar 

  • Nishida, A., Akasofu, S.-I.: Geomagnetic Diagnosis of the Magnetosphere (Physics and Chemistry in Space, Vol. 9). Phys. Today 32, 57 (1979). https://doi.org/10.1063/1.2995622

    Article  Google Scholar 

  • O’Brien, T.P., McPherron, R.L., Sornette, D., Reeves, G.D., Friedel, R., Singer, H.J.: Which magnetic storms produce relativistic electrons at geosynchronous orbit? J. Geophys. Res. Space Phys. 106(A8), 15533–15544 (2001)

    Article  Google Scholar 

  • Ojeda, G.A., Mendes, O., Calzadilla, M.A., Domingues, M.O.: Spatiotemporal entropy analysis of the magnetic field to help magnetic cloud characterization. J. Geophys. Res. 118, 5403–5414 (2013)

    Article  Google Scholar 

  • Paulikas, G., Blake, J.: Effects of the solar wind on magnetospheric dynamics: Energetic electrons at the synchronous orbit. In: Olson, W.P. (ed.) Quantitative Modeling of Magnetospheric Processes. Geophysical Monograph Series, vol. 21, pp. 180–202. American Geophysical Union, Washington, DC (1979). https://doi.org/10.1029/GM021p0180

    Chapter  Google Scholar 

  • Perreault, P., Akasofu, S.-I.: A study of geomagnetic storms. Geophys. J. R. Astron. Soc. 54, 3 (1978). https://doi.org/10.1111/j.1365-246x.1978.tb-05494.x

    Article  Google Scholar 

  • Reeves, G.D.: Relativistic electrons and magnetic storms: 1992–1995. Geophys. Res. Lett. 25(11), 1817–1820 (1998)

    Article  Google Scholar 

  • Reeves, G.D., Daglis, I.A.: Geospace magnetic storms and the Van Allen radiation belts. In: Balasis, G., Daglis, I.A., Mann, I.R. (eds.) Waves, Particles, and Storms in Geospace, pp. 51–79. Oxford University Press, Oxford (2016)

    Chapter  Google Scholar 

  • Reeves, E.G.D., McAdams, K.L., Friedel, R.H.W., O’Brien, T.P.: Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys. Res. Lett. 30(10), 1529 (2003). https://doi.org/10.1029/2002GL016513

    Article  Google Scholar 

  • Reeves, G.D., Morley, S.K., Friedel, R.H.W., Henderson, M.G., Cayton, T.E., Cunningham, G., et al.: On the relationship between relativistic electron flux and solar wind velocity: Paulikas and Blake revisited. J. Geophys. Res. 116, A02213 (2011). https://doi.org/10.1029/2010JA015735.

    Article  Google Scholar 

  • Santos, C.A.G., de Morais, B.S.: Identification of precipitation zones within São Francisco River basin (Brazil) by global wavelet power spectra. Hydrol. Sci. J. 58(4), 789–796 (2013)

    Article  Google Scholar 

  • Su, Z., et al.: Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes. Geophys. Res. Lett. 41(2), 229–235 (2014). https://doi.org/10.1002/2013GL058912

    Article  Google Scholar 

  • Su, Z., Gao, Z., Reeves, G.D.: Nonstorm time dropout of radiation belt electron fluxes on 24 September 2013 (2016). The United States. https://doi.org/10.1002/2016JA022546

  • Tang, C.L., Wang, Y.X., Ni, B., Zhang, J.-C., Reeves, G.D., Su, Z.P., Baker, D.N., Spence, H.E., Funsten, H.O., Blake, J.B.: Radiation belt seed population and its association with the relativistic electron dynamics: a statistical study. J. Geophys. Res. Space Phys. 122, 5261–5276 (2017). https://doi.org/10.1002/2017JA023905

    Article  Google Scholar 

  • Thorne, R.E., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., Kanekal, S.G.: Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus. Nature 504(7480), 411–414 (2013)

    Article  Google Scholar 

  • Torrence, C., Compo, G.P.: A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79(1), 61–78 (1998)

    Article  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: The cause of high-intensity long-duration continuous AE activity (HILDCAAs): interplanetary Alfvén wave trains. Planet. Space Sci. 35(4), 405–412 (1987). https://doi.org/10.1016/0032-0633(87)90097-3

    Article  Google Scholar 

  • Turner, D.L., Angelopoulos, V., Li, W., Hartinger, M.D., Usanova, M., Mann, I.R., Bortnik, J., Shprits, Y.: On the storm-time evolution of relativistic electron phase space density in Earth’s outer radiation belt. J. Geophys. Res. 118, 2196–2212 (2013). https://doi.org/10.1002/jgra.50151

    Article  Google Scholar 

  • Turner, D.L., Angelopoulos, V., Li, W., Bortnik, J., Ni, B., Ma, Q., et al.: Competing source and loss mechanisms due to wave-particle interactions in Earth’s outer radiation belt during the 30 September to 3 October 2012 geomagnetic storm. J. Geophys. Res. Space Phys. 119(3), 1960–1979 (2014)

    Article  Google Scholar 

  • Turner, D.L., Kilpua, E.K.J., Hietala, H., Claudepierre, S.G., O’Brien, T.P., Fennell, J.F., et al.: The response of Earth’s electron radiation belts to geomagnetic storms: statistics from the Van Allen Probes era including effects from different storm drivers. J. Geophys. Res. Space Phys. 124(2), 1013–1034 (2019)

    Article  Google Scholar 

  • Usoro, A.E.: Some basic properties of cross-correlation functions of n-dimensional vector time series. J. Stat. Econom. Methods 4(1), 46 (2015)

    Google Scholar 

  • Wanliss, J.A., Showalter, K.M.: High-resolution global storm index: Dst versus SYM-H. J. Geophys. Res. Space Phys. 111(A2), A02202 (2006)

    Article  Google Scholar 

  • White, P.: Transforms, wavelets. In: Encyclopedia of Vibration, pp. 1419–1435 (2001). https://doi.org/10.1006/rwvb.2001.0157

    Chapter  Google Scholar 

  • Yan, R., Woith, H., Wang, R., et al.: Decadal radon cycles in a hot spring. Sci. Rep. 7, 12120 (2017). https://doi.org/10.1038/s41598-017-12441-0

    Article  Google Scholar 

  • Zhao, H., Li, X.: Inward shift of outer radiation belt electrons as a function of the Dst index and the influence of the solar wind on electron injections into the slot region. J. Geophys. Res. Space Phys. 118, 756–764 (2013). https://doi.org/10.1029/2012JA018179

    Article  Google Scholar 

Download references

Acknowledgements

The solar wind, interplanetary magnetic field and geomagnetic indices were obtained from the OmniWeb data explorer (https://omniweb.gsfc.nasa.gov/). The integrated fluxes of electrons with energies E > 2 MeV are collected from the GOES-8 and GOES-10 (https://ngdc.noaa.gov/stp/satellite/goes/dataaccess.html). We want to acknowledge these data services.

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Tulsi Thapa and Ashok Silwal contributed equally to this work.

Corresponding author

Correspondence to Binod Adhikari.

Ethics declarations

Ethical disclosures

Disclosure of potential conflicts of interest research involving human participants and/or animals informed consent.

Competing Interests

The corresponding author states that there is no conflict of interest on behalf of all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapa, T., Silwal, A., Adhikari, B. et al. Variability of relativistic electron flux (E > 2 MeV) during geo-magnetically quiet and disturbed days: a case study. Astrophys Space Sci 367, 114 (2022). https://doi.org/10.1007/s10509-022-04141-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04141-7

Keywords

Navigation