Skip to main content
Log in

Analysis of Large Deflections of Prominence–CME Events during the Rising Phase of Solar Cycle 24

  • Editors’ Choice
  • Published:
Solar Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The analysis of the deflection of coronal mass ejection (CME) events plays an important role in the improvement of the forecasting of their geo-effectiveness. Motivated by the scarcity of comprehensive studies of CME events with a focus on the governing conditions that drive deflections during their early stages, we performed an extensive analysis of 13 CME events that exhibited large deflections during their early development in the low corona. The study was carried out by exploiting solar-corona-imaging observations at different heights and wavelengths from instruments onboard several space- and ground-based solar observatories, namely the Project for Onboard Autonomy 2 (PROBA2), Solar Dynamics Observatory (SDO), Solar TErrestrial RElations Observatory (STEREO), Solar and Heliospheric Observatory (SOHO) spacecraft, and from the National Solar Observatory (NSO). The selected events were observed between October 2010 and September 2011, to take advantage of the location in near quadrature of the STEREO spacecraft and Earth in this time period. In particular, we determined the 3D trajectory of the front envelope of the CMEs and their associated prominences with respect to their solar sources by means of a forward-modeling and tie-pointing tool, respectively. By using a potential-field source-surface model, we estimated the coronal magnetic fields of the ambient medium through which the events propagate to investigate the role of the magnetic-energy distribution in the non-radial propagation of both structures (front envelope and prominence) and in their kinematic properties. The ambient magnetic environment during the eruption and early stages of the events is found to be crucial in determining the trajectory of the CME events, in agreement with previous reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Antonucci, E., Romoli, M., Andretta, V., Fineschi, S., Heinzel, P., Moses, J.D., Naletto, G., Nicolini, G., Spadaro, D., Teriaca, L., Berlicki, A., Capobianco, G., Crescenzio, G., Da Deppo, V., Focardi, M., Frassetto, F., Heerlein, K., Land ini, F., Magli, E., Malvezzi, A.M., Massone, G., Melich, R., Nicolosi, P., Noci, G., Pancrazzi, M., Pelizzo, M.G., Poletto, L., Sasso, C., Schühle, U., Solanki, S.K., Strachan, L., Susino, R., Tondello, G., Uslenghi, M., Woch, J., Abbo, L., Bemporad, A., Casti, M., Dolei, S., Grimani, C., Messerotti, M., Ricci, M., Straus, T., Telloni, D., Zuppella, P., Auchère, F., Bruno, R., Ciaravella, A., Corso, A.J., Alvarez Copano, M., Aznar Cuadrado, R., D’Amicis, R., Enge, R., Gravina, A., Jejčič, S., Lamy, P., Lanzafame, A.r., Meierdierks, T., Papagiannaki, I., Peter, H., Fernandez Rico, G., Giday Sertsu, M., Staub, J., Tsinganos, K., Velli, M., Ventura, R., Verroi, E., Vial, J.-C., Vives, S., Volpicelli, A., Werner, S., Zerr, A., Negri, B., Castronuovo, M., Gabrielli, A., Bertacin, R., Carpentiero, R., Natalucci, S., Marliani, F., Cesa, M., Laget, P., Morea, D., Pieraccini, S., Radaelli, P., Sandri, P., Sarra, P., Cesare, S., Del Forno, F., Massa, E., Montabone, M., Mottini, S., Quattropani, D., Schillaci, T., Boccardo, R., Brando, R., Pandi, A., Baietto, C., Bertone, R., Alvarez-Herrero, A., García Parejo, P., Cebollero, M., Amoruso, M., Centonze, V.: 2019, Metis: the Solar Orbiter visible light and ultraviolet coronal imager. Astron. Astrophys. DOI. ADS.

    Article  Google Scholar 

  • Bemporad, A.: 2009, Stereoscopic reconstruction from STEREO/EUV imagers data of the three-dimensional shape and expansion of an erupting prominence. Astrophys. J. 701, 298. DOI. ADS.

    Article  ADS  Google Scholar 

  • Brueckner, G.E., Howard, R.A., Koomen, M.J., Korendyke, C.M., Michels, D.J., Moses, J.D., Socker, D.G., Dere, K.P., Lamy, P.L., Llebaria, A., Bout, M.V., Schwenn, R., Simnett, G.M., Bedford, D.K., Eyles, C.J.: 1995, The Large Angle Spectroscopic Coronagraph (LASCO). Solar Phys. 162, 357. DOI.

    Article  ADS  Google Scholar 

  • Cécere, M., Sieyra, M.V., Cremades, H., Mierla, M., Sahade, A., Stenborg, G., Costa, A., West, M.J., D’Huys, E.: 2020, Large non-radial propagation of a coronal mass ejection on 2011 January 24. Adv. Space Res. 65, 1654. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V.: 2004, On the three-dimensional configuration of coronal mass ejections. Astron. Astrophys. 422, 307. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Bothmer, V., Tripathi, D.: 2006, Properties of structured coronal mass ejections in solar cycle 23. Adv. Space Res. 38, 461. DOI. ADS.

    Article  ADS  Google Scholar 

  • Cremades, H., Iglesias, F.A., Merenda, L.A.: 2020, Asymmetric expansion of coronal mass ejections in the low corona. Astron. Astrophys. 635, A100. DOI. ADS.

    Article  ADS  Google Scholar 

  • de Koning, C.A., Pizzo, V.J., Biesecker, D.A.: 2009, Geometric localization of CMEs in 3D space using STEREO Beacon data: first results. Solar Phys. 256, 167. DOI. ADS.

    Article  ADS  Google Scholar 

  • Domingo, V., Fleck, B., Poland, A.I.: 1995, The SOHO mission: An overview. Solar Phys. 162, 1. DOI. ADS.

    Article  ADS  Google Scholar 

  • Filippov, B.P., Gopalswamy, N., Lozhechkin, A.V.: 2001, Non-radial motion of eruptive filaments. Solar Phys. 203, 119. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Mäkelä, P., Xie, H., Akiyama, S., Yashiro, S.: 2009, CME interactions with coronal holes and their interplanetary consequences. J. Geophys. Res. (Space Phys.) 114, A00A22. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gosling, J.T., Thomsen, M.F., Bame, S.J., Zwickl, R.D.: 1987, The eastward deflection of fast coronal mass ejecta in interplanetary space. J. Geophys. Res. 92, 12399. DOI. ADS.

    Article  ADS  Google Scholar 

  • Gui, B., Shen, C., Wang, Y., Ye, P., Liu, J., Wang, S., Zhao, X.: 2011, Quantitative analysis of CME deflections in the corona. Solar Phys. 271, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Halain, J.-P., Berghmans, D., Seaton, D.B., Nicula, B., De Groof, A., Mierla, M., Mazzoli, A., Defise, J.-M., Rochus, P.: 2013, The SWAP EUV imaging telescope, part II: in-flight performance and calibration. Solar Phys. 286, 67. DOI. ADS.

    Article  ADS  Google Scholar 

  • Howard, R.A., Moses, J.D., Vourlidas, A., Newmark, J.S., Socker, D.G., Plunkett, S.P., Korendyke, C.M., Cook, J.W., Hurley, A., Davila, J.M., et al.: 2008, Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI). Space Sci. Rev. 136, 67. DOI.

    Article  ADS  Google Scholar 

  • Inhester, B.: 2006, Stereoscopy basics for the STEREO mission. arXiv:astro-ph/0612649. ADS.

  • Isavnin, A., Vourlidas, A., Kilpua, E.K.J.: 2014, Three-dimensional evolution of flux-rope CMEs and its relation to the local orientation of the heliospheric current sheet. Solar Phys. 289, 2141. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kaiser, M.L., Kucera, T.A., Davila, J.M., St. Cyr, O.C., Guhathakurta, M., Christian, E.: 2008, The STEREO mission: an introduction. Space Sci. Rev. 136, 5. DOI.

    Article  ADS  Google Scholar 

  • Kay, C., Gopalswamy, N., Xie, H., Yashiro, S.: 2017, Deflection and rotation of CMEs from active region 11158. Solar Phys. 292, 78. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kay, C., Opher, M., Evans, R.M.: 2015, Global trends of CME deflections based on CME and solar parameters. Astrophys. J. 805, 168. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kennedy, J.R., GONG Team: 1994. Pyper, D.M., Angione, R.J. (eds.) GONG, a global network of automated solar telescopes, ASP CS 55, Astron. Soc. Pacific, San Francisco. 188. ADS.

    Google Scholar 

  • Kilpua, E.K.J., Pomoell, J., Vourlidas, A., Vainio, R., Luhmann, J., Li, Y., Schroeder, P., Galvin, A.B., Simunac, K.: 2009, STEREO observations of interplanetary coronal mass ejections and prominence deflection during solar minimum period. Ann. Geophys. 27, 4491. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lamy, P., Damé, L., Vivès, S., Zhukov, A.: 2010, ASPIICS: a giant coronagraph for the ESA/PROBA-3 Formation Flying Mission, SPIE CS-7731, 773118. DOI. ADS.

    Book  Google Scholar 

  • Lemen, J.R., Title, A.M., Akin, D.J., Boerner, P.F., Chou, C., Drake, J.F., Duncan, D.W., Edwards, C.G., Friedlaender, F.M., Heyman, G.F., et al.: 2012, The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275, 17. DOI.

    Article  ADS  Google Scholar 

  • Liewer, P.C., de Jong, E.M., Hall, J.R., Howard, R.A., Thompson, W.T., Culhane, J.L., Bone, L., van Driel-Gesztelyi, L.: 2009, Stereoscopic analysis of the 19 may 2007 erupting filament. Solar Phys. 256, 57. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liewer, P.C., Panasenco, O., Hall, J.R.: 2013, Stereoscopic analysis of the 31 August 2007 prominence eruption and coronal mass ejection. Solar Phys. 282, 201. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liewer, P., Panasenco, O., Vourlidas, A., Colaninno, R.: 2015, Observations and analysis of the non-radial propagation of coronal mass ejections near the Sun. Solar Phys. 290, 3343. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Möstl, C., Martinez-Oliveros, J.C., Bale, S.D., Lin, R.P., Harrison, R.A., Temmer, M., Webb, D.F., Odstrcil, D.: 2012, Interactions between coronal mass ejections viewed in coordinated imaging and in situ observations. Astrophys. J. Lett. 746, L15. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K.J., Lugaz, N., Nitta, N.V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., Galvin, A.B.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481. DOI. ADS.

    Article  ADS  Google Scholar 

  • Liu, Y., Thernisien, A., Luhmann, J.G., Vourlidas, A., Davies, J.A., Lin, R.P., Bale, S.D.: 2010, Reconstructing coronal mass ejections with coordinated imaging and in situ observations: global structure, kinematics, and implications for space weather forecasting. Astrophys. J. 722, 1762. DOI. ADS.

    Article  ADS  Google Scholar 

  • Lugaz, N., Farrugia, C.J., Davies, J.A., Möstl, C., Davis, C.J., Roussev, I.I., Temmer, M.: 2012, The deflection of the two interacting coronal mass ejections of 2010 May 23–24 as revealed by combined in situ measurements and heliospheric imaging. Astrophys. J. 759, 68. DOI. ADS.

    Article  ADS  Google Scholar 

  • MacQueen, R.M., Hundhausen, A.J., Conover, C.W.: 1986, The propagation of coronal mass ejection transients. J. Geophys. Res. 91, 31. DOI. ADS.

    Article  ADS  Google Scholar 

  • Maloney, S.A., Gallagher, P.T., McAteer, R.T.J.: 2009, Reconstructing the 3-d trajectories of CMEs in the inner heliosphere. Solar Phys. 256, 149. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin, S.F.: 2003, Signs of helicity in solar prominences and related features. Adv. Space Res. 32, 1883. DOI. ADS.

    Article  ADS  Google Scholar 

  • Martin, S.F., Panasenco, O., Engvold, O., Lin, Y.: 2008, The link between CMEs, filaments and filament channels. Ann. Geophys. 26, 3061. DOI. ADS.

    Article  ADS  Google Scholar 

  • McCauley, P.I., Su, Y.N., Schanche, N., Evans, K.E., Su, C., McKillop, S., Reeves, K.K.: 2015, Prominence and filament eruptions observed by the solar dynamics observatory: statistical properties, kinematics, and online catalog. Solar Phys. 290, 1703. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Davila, J., Thompson, W., Inhester, B., Srivastava, N., Kramar, M., St. Cyr, O.C., Stenborg, G., Howard, R.A.: 2008, A quick method for estimating the propagation direction of coronal mass ejections using STEREO-COR1 images. Solar Phys. 252, 385. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Marqué, C., Rodriguez, L., Gissot, S., Zhukov, A.N., Berghmans, D., Davila, J.: 2009, On 3D reconstruction of coronal mass ejections, I: method description and application to SECCHI-COR data. Solar Phys. 259, 123. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Inhester, B., Antunes, A., Boursier, Y., Byrne, J.P., Colaninno, R., Davila, J., de Koning, C.A., Gallagher, P.T., Gissot, S., Howard, R.A., Howard, T.A., Kramar, M., Lamy, P., Liewer, P.C., Maloney, S., Marqué, C., McAteer, R.T.J., Moran, T., Rodriguez, L., Srivastava, N., St. Cyr, O.C., Stenborg, G., Temmer, M., Thernisien, A., Vourlidas, A., West, M.J., Wood, B.E., Zhukov, A.N.: 2010, On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann. Geophys. 28, 203. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mierla, M., Seaton, D.B., Berghmans, D., Chifu, I., De Groof, A., Inhester, B., Rodriguez, L., Stenborg, G., Zhukov, A.N.: 2013, Study of a prominence eruption using PROBA2/SWAP and STEREO/EUVI data. Solar Phys. 286, 241. DOI. ADS.

    Article  ADS  Google Scholar 

  • Möstl, C., Rollett, T., Frahm, R.A., Liu, Y.D., Long, D.M., Colaninno, R.C., Reiss, M.A., Temmer, M., Farrugia, C.J., Posner, A., Dumbović, M., Janvier, M., Démoulin, P., Boakes, P., Devos, A., Kraaikamp, E., Mays, M.L., Vršnak, B.: 2015, Strong coronal channeling and interplanetary evolution of a solar storm up to Earth and Mars. Nat. Comm. 6, 7135. DOI. ADS.

    Article  ADS  Google Scholar 

  • Müller, D., Nicula, B., Felix, S., Verstringe, F., Bourgoignie, B., Csillaghy, A., Berghmans, D., Jiggens, P., García-Ortiz, J.P., Ireland, J., Zahniy, S., Fleck, B.: 2017, JHelioviewer - time-dependent 3D visualisation of solar and heliospheric data. Astron. Astrophys. 606, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F.: 2008, In: Howe, R., Komm, R.W., Balasubramaniam, K.S., Petrie, G.J.D. (eds.) Topological analyses of symmetric eruptive prominences, ASP CS-383, Astron. Soc. Pacific, San Francisco, 243. ADS.

    Google Scholar 

  • Panasenco, O., Martin, S., Joshi, A.D., Srivastava, N.: 2011, Rolling motion in erupting prominences observed by STEREO. J. Atmos. Solar-Terr. Phys. 73, 1129. DOI. ADS.

    Article  ADS  Google Scholar 

  • Panasenco, O., Martin, S.F., Velli, M., Vourlidas, A.: 2013, Origins of rolling, twisting, and non-radial propagation of eruptive solar events. Solar Phys. 287, 391. DOI. ADS.

    Article  ADS  Google Scholar 

  • Pesnell, W.D., Thompson, B.J., Chamberlin, P.C.: 2012, The Solar Dynamics Observatory (SDO). Solar Phys. 275, 3. DOI.

    Article  ADS  Google Scholar 

  • Pevtsov, A.A., Panasenco, O., Martin, S.F.: 2012, Coronal mass ejections from magnetic systems encompassing filament channels without filaments. Solar Phys. 277, 185. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rollett, T., Möstl, C., Temmer, M., Frahm, R.A., Davies, J.A., Veronig, A.M., Vršnak, B., Amerstorfer, U.V., Farrugia, C.J., Žic, T., Zhang, T.L.: 2014, Combined multipoint remote and in situ observations of the asymmetric evolution of a fast solar coronal mass ejection. Astrophys. J. Lett. 790, L6. DOI. ADS.

    Article  ADS  Google Scholar 

  • Santandrea, S., Gantois, K., Strauch, K., Teston, F., Tilmans, E., Baijot, C., Gerrits, D., De Groof, A., Schwehm, G., Zender, J.: 2013, PROBA2: mission and spacecraft overview. Solar Phys. 286, 5. DOI. ADS.

    Article  ADS  Google Scholar 

  • Schrijver, C.J., De Rosa, M.L.: 2003, Photospheric and heliospheric magnetic fields. Solar Phys. 212, 165. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Berghmans, D., Nicula, B., Halain, J.-P., De Groof, A., Thibert, T., Bloomfield, D.S., Raftery, C.L., Gallagher, P.T., Auchère, F., Defise, J.-M., D’Huys, E., Lecat, J.-H., Mazy, E., Rochus, P., Rossi, L., Schühle, U., Slemzin, V., Yalim, M.S., Zender, J.: 2013, The SWAP EUV imaging telescope, part I: instrument overview and pre-flight testing. Solar Phys. 286, 43. DOI. ADS.

    Article  ADS  Google Scholar 

  • Seaton, D.B., Mierla, M., Berghmans, D., Zhukov, A.N., Dolla, L.: 2011, SWAP-SECCHI observations of a mass-loading type solar eruption. Astrophys. J. Lett. 727, L10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Gui, B., Ye, P., Wang, S.: 2011, Kinematic evolution of a slow CME in corona viewed by STEREO-B on 8 October 2007. Solar Phys. 269, 389. DOI. ADS.

    Article  ADS  Google Scholar 

  • Shen, C., Wang, Y., Wang, S., Liu, Y., Liu, R., Vourlidas, A., Miao, B., Ye, P., Liu, J., Zhou, Z.: 2012, Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. Nature Phys. 8, 923. DOI. ADS.

    Article  ADS  Google Scholar 

  • Srivastava, N., Inhester, B., Mierla, M., Podlipnik, B.: 2009, 3D reconstruction of the leading edge of the 20 may 2007 partial halo CME. Solar Phys. 259, 213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Temmer, M., Preiss, S., Veronig, A.M.: 2009, CME projection effects studied with STEREO/COR and SOHO/LASCO. Solar Phys. 256, 183. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2009, Forward modeling of coronal mass ejections using STEREO/SECCHI data. Solar Phys. 256, 111. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A., Vourlidas, A., Howard, R.A.: 2011, CME reconstruction: pre-STEREO and STEREO era. J. Atmos. Solar-Terr. Phys. 73, 1156. DOI. ADS.

    Article  ADS  Google Scholar 

  • Thernisien, A.F.R., Howard, R.A., Vourlidas, A.: 2006, Modeling of flux rope coronal mass ejections. Astrophys. J. 652, 763. DOI. ADS.

    Article  ADS  Google Scholar 

  • Vandas, M., Fischer, S., Dryer, M., Smith, Z., Detman, T.: 1996, Simulation of magnetic cloud propagation in the inner heliosphere in two dimensions, 2: a loop parallel to the ecliptic plane and the role of helicity. J. Geophys. Res. 101, 2505. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, R., Liu, Y.D., Dai, X., Yang, Z., Huang, C., Hu, H.: 2015, The role of active region coronal magnetic field in determining coronal mass ejection propagation direction. Astrophys. J. 814, 80. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., Wang, S.: 2011, Statistical study of coronal mass ejection source locations: understanding CMEs viewed in coronagraphs. J. Geophys. Res. (Space Phys.) 116, A04104. DOI. ADS.

    Article  ADS  Google Scholar 

  • Xie, H., St. Cyr, O.C., Gopalswamy, N., Yashiro, S., Krall, J., Kramar, M., Davila, J.: 2009, On the origin, 3D structure and dynamic evolution of CMEs near solar minimum. Solar Phys. 259, 143. DOI. ADS.

    Article  ADS  Google Scholar 

  • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O.C., Plunkett, S.P., Rich, N.B., Howard, R.A.: 2004, A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J. Geophys. Res. (Space Phys.) 109, A07105. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhuang, B., Wang, Y., Shen, C., Liu, S., Wang, J., Pan, Z., Li, H., Liu, R.: 2017, The significance of the influence of the CME deflection in interplanetary space on the CME arrival at Earth. Astrophys. J. 845, 117. DOI. ADS.

    Article  ADS  Google Scholar 

  • Zhuang, B., Wang, Y., Hu, Y., Shen, C., Liu, R., Gou, T., Zhang, Q., Li, X.: 2019, Numerical simulations on the deflection of coronal mass ejections in the interplanetary space. Astrophys. J. 876, 73. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.V. Sieyra and M. Cécere acknowledge the PROBA2 Guest Investigator program grant received to carry out this work and the SWAP data provided by the PROBA2 team. M.V. Sieyra acknowledges support from CONICET as postdoc fellow. M. Cécere, H. Cremades, F.A. Iglesias, and A. Costa are members of the Carrera del Investigador Científico (CONICET). A. Sahade is doctoral fellow of CONICET. M. Cécere and A. Sahade acknowledge support from ANPCyT under grant number PICT No. 2016-2480. M. Cécere, M.V. Sieyra, and A. Sahade also acknowledge support by SECYT-UNC grant number PC No. 33620180101147CB. M.V. Sieyra, H. Cremades, and F.A. Iglesias are grateful for the support of project UTN UTI4915TC. M. Mierla, M. West, and E. D’Huys acknowledge support from the Belgian Federal Science Policy Office (BELSPO) through the ESA-PRODEX programme, grant No. 4000120800. G. Stenborg acknowledges the support from the NASA STEREO/SECCHI program NNG17PP27I. The authors are grateful to an anonymous reviewer for useful comments and suggestions. Data courtesy of NASA/SDO and the AIA science team. The SOHO/LASCO data used here are produced by a consortium of the Naval Research Laboratory (USA), Max-Planck-Institut für Aeronomie (Germany), Laboratoire d’Astrophysique de Marseille (France), and the University of Birmingham (UK). SOHO is a mission of international cooperation between ESA and NASA. The STEREO/SECCHI-EUVI, COR1, and COR2 data are produced by an international consortium of the NRL, LMSAL and NASA GSFC (USA), RAL and Univ. Birmingham (UK), MPS (Germany), CSL (Belgium), IOTA and IAS (France). This work utilizes data from the National Solar Observatory Integrated Synoptic Program, which is operated by the Association of Universities for Research in Astronomy, under a cooperative agreement with the National Science Foundation and with additional financial support from the National Oceanic and Atmospheric Administration, the National Aeronautics and Space Administration, and the United States Air Force. The GONG network of instruments is hosted by the Big Bear Solar Observatory, High Altitude Observatory, Learmonth Solar Observatory, Udaipur Solar Observatory, Instituto de Astrofísica de Canarias, and Cerro Tololo Interamerican Observatory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Valeria Sieyra.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection:

PROBA-2 at Ten Years

Guest Editors: Elke D’Huys, Marie Dominique and Matthew J. West

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sieyra, M.V., Cécere, M., Cremades, H. et al. Analysis of Large Deflections of Prominence–CME Events during the Rising Phase of Solar Cycle 24. Sol Phys 295, 126 (2020). https://doi.org/10.1007/s11207-020-01694-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-020-01694-0

Keywords

Navigation