Skip to main content
Log in

The 04 – 10 September 2017 Sun–Earth Connection Events: Solar Flares, Coronal Mass Ejections/Magnetic Clouds, and Geomagnetic Storms

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

In early September 2017, a series of solar flares and coronal mass ejections (CMEs) erupted from the Sun. The Cor2a coronagraph, a unit of the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI), onboard the Solar Terrestrial Relations Observatory (STEREO)-A spacecraft recorded two Sun–Earth-directed CMEs on 4 September (referred to as CME04) and 6 September (referred to as CME06). A few days later, the Wind spacecraft (\({\approx}\,212.4\) solar radii: \(\mathrm{R}_{\odot}\)) recorded two interplanetary shocks, presumably driven by CME04 and CME06, at \({\approx}\,22\mbox{:}41~\mbox{UT}\) on 06 September 2017 (referred to as Shock06) and at \({\approx}\,22\mbox{:}48~\mbox{UT}\) on 07 September 2017 (referred to as Shock07), respectively. The travel time of the CME04/Shock06 [\(\Delta t_{\text{shock-CME@18R}\odot}\)] and CME06/Shock07 from \(18~\mathrm{R}_{\odot}\) to the Wind spacecraft was 41.52 hours and 32.47 hours, respectively. The propagating speed [\(V_{\mathrm{CME}}\)] of the CME04 and CME06 at \({\approx}\,18~\mathrm{R}_{\odot}\) was determined with SECCHI/Cor2a as \({\approx}\,886~\mbox{km}\,\mbox{s}^{-1}\) and \({\approx}\,1368~\mbox{km}\,\mbox{s}^{-1}\), respectively. Assuming a constant velocity after \(18~\mathrm{R}_{\odot }\), the estimated \(\Delta t_{\text{shock-CME@18R}\odot}\) is 42.45 and 27.5 hours for CME04 and CME06, respectively. This simple estimate of the CME propagation speed provides a satisfactory result for the CME04 event (error \({\approx}\,2.3\%\)) but not for the CME06 event (error \({\approx}\,15.3\%\)). The second event, CME06, was delayed further due to an interaction with the preceding event (CME04). It is suggested that the CME speed estimated near the Sun with coronagraph images can be a good estimator for the interplanetary CME (ICME) transit time when there is no pre-event. A three-dimensional magnetohydrodynamic simulation is performed to address this issue by providing a panoramic view of the entire process not available from the observations. A southward interplanetary magnetic field [\(B_{\mathrm{s}}\)] increased sharply to −31.6 nT on 7 September at Wind, followed by a severe geomagnetic storm (\(\mathrm{Dst} = -124~\mbox{nT}\)). The sharp increase of the IMF [\(B_{\mathrm{s}}\)] was a result of the interaction between Shock07 and the driver of Shock06 (CME04). This study suggests that a severe geomagnetic storm can be caused by the interaction between a MC, with an impinging IP shock from behind, and the Earth’s magnetosphere. The intensity of a geomagnetic storm will likely be stronger for an event associated with ICME–ICME interaction than for a geomagnetic event caused by only a single ICME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Bothmer, V., Schwenn, R.: 1996, Signatures of fast CMEs in interplanetary space. Adv. Space Res. 17, 319. DOI .

    Article  ADS  Google Scholar 

  • Cane, H.V., Richardson, I.G.: 2003, Interplanetary coronal mass ejections in the near-Earth solar wind during 1996 – 2002. J. Geophys. Res. 108, 1156. DOI .

    Article  Google Scholar 

  • Chashei, I.V., Tyul’bashev, S.A., Shishov, V.I., Subaev, I.A.: 2018, Coronal mass ejections in September 2017 from monitoring of interplanetary scintillations with the large phase array of the Lebedev Institute of Physics. Astron. Rep. 62, 346. DOI .

    Article  ADS  Google Scholar 

  • Collier, M.R., Lepping, R.P., Berdichevsky, D.B.: 2007, A statistical study of interplanetary shocks and pressure pulses internal to magnetic clouds. J. Geophys. Res. 112, A06102. DOI .

    Article  ADS  Google Scholar 

  • Dryer, M.: 1994, Interplanetary studies: Propagation of disturbances between the Sun and the magnetosphere. Space Sci. Rev. 67, 363. DOI .

    Article  ADS  Google Scholar 

  • Echer, E., Gonzalez, W.D.: 2004, Geoeffectiveness of interplanetary shocks magnetic clouds, sector boundary crossings and their combined occurrence. Geophys. Res. Lett. 31, L09808. DOI .

    Article  ADS  Google Scholar 

  • Fry, C.D., Sun, W., Deehr, C.S., Dryer, M., Smith, Z., Akasofu, S.-I., Tokumaru, M. Kojima, M.: 2001, Improvements to the HAF solar wind model for space weather predictions. J. Geophys. Res. 106(A10), 20985. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.A.: 2016, History and development of coronal mass ejections as a key player in solar terrestrial relationship. Geosci. Lett. 3, 8, 18 pp. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N.A., Lara, A., Lepping, R.P., Kaiser, M.L., Berdichevsky, D.B., St. Cyr, O.C.: 2000, Interplanetary acceleration of coronal mass ejections. Geophys. Res. Lett. 27, 145. DOI .

    Article  ADS  Google Scholar 

  • Gopalswamy, N., Lara, A., Yashiro, S., Kaiser, M.L., Howard, R.A.: 2001, Predicting the 1-AU arrival of coronal mass ejections. J. Geophys. Res. 106(A12), 29209. DOI .

    Article  ADS  Google Scholar 

  • Gosling, J.T.: 1990, Coronal mass ejections and magnetic flux ropes in interplanetary space. In: Physics of Magnetic Flux Ropes (A92-31201 12-75), Am. Geophys. Union, Washington, 343. DOI .

    Chapter  Google Scholar 

  • Gosling, J.T., Hilder, E., MacQueen, R.M., Munro, R.H., Poland, A.I., Ross, C.L.: 1975, Direct observations of a flare related coronal and solar wind disturbance. Solar Phys. 40, 439. DOI .

    Article  ADS  Google Scholar 

  • Gonzalez, W.D., Joselyn, J.A., Kamide, Y., Kroehl, H.W., Rostoker, G., Tsurutani, B.T., Vayliuma, V.M.: 1994, What is a geomagnetic storm? J. Geophys. Res. 99, 5771. DOI .

    Article  ADS  Google Scholar 

  • Guo, J. Dumbović, M. Wimmer-Schweingruber, R.F., Temmer, M., Lohf, H., Wang, Y., et al.: 2018, Space Weather 16(8), 1156. DOI .

    Article  ADS  Google Scholar 

  • Hakamada, K., Akasofu, S.-I.: 1982, Simulation of three-dimensional solar wind disturbances and resulting geomagnetic storms. Space Sci. Rev. 31, 3.

    Article  ADS  Google Scholar 

  • Han, S.M., Wu, S.T., Dryer, M.: 1988, A three-dimensional, time-dependent numerical modeling of super-sonic, super-Alfvénic MHD flow. Comput. Fluids 16, 81 (ISSN 0045-7930)

    Article  ADS  Google Scholar 

  • Huttunen, K.E.J., Schwenn, R., Bothmer, V., Koskinen, H.E.J.: 2005, Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 23(2), 625. DOI .

    Article  ADS  Google Scholar 

  • Kamide, Y., Yokoyama, N., Gonzalez, W., Tsurutani, B.T., Daglis, I.A., Brekke, A., Masuda, S.: 1998, Two-step development of geomagnetic storms. J. Geophys. Res. 103, 6917. DOI .

    Article  ADS  Google Scholar 

  • Lax, P.D., Wendroff, B.: 1960, Systems of conservation laws. Comm. Pure Appl. Math. 13, 217.

    Article  MathSciNet  Google Scholar 

  • Lepping, R.P., Jones, J.A., Burlaga, L.F.: 1990, Magnetic field structure of interplanetary magnetic clouds at 1 AU. J. Geophys. Res. 95(A8), 11957. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Wu, C.-C., Berdichevsky, D.B.: 2005, Automatic identification of magnetic clouds and cloud-like regions at 1 AU: Occurrence rate and other properties. Ann. Geophys. 23, 2687. DOI .

    Article  ADS  Google Scholar 

  • Lepping, R.P., Berdichevsky, D.B., Wu, C.-C., Szabo, A., Narock, T., Mariani, F., Lazarus, A.J., Quivers, A.J.: 2006, A summary of WIND magnetic clouds for years 1995 – 2003: Model-fitted parameters, associated errors and classifications. Ann. Geophys. 24, 215. DOI .

    Article  ADS  Google Scholar 

  • Liou, K., Wu, C.-C., Dryer, M., Wu, S.T., Nathan, R., Plunkett, S., Simpson, L., Fry, C.D., Schenk, K.: 2014, Global simulation of extremely fast coronal mass ejection on 23 July 2012. J. Atmos. Solar-Terr. Phys. 121, 32. DOI .

    Article  ADS  Google Scholar 

  • Liu, Y.D., Luhmann, J.G., Kajdič, P., Kilpua, E.K.J., Lugaz, N., Nitta, V., Möstl, C., Lavraud, B., Bale, S.D., Farrugia, C.J., Galvin, A.B.: 2014, Observations of an extreme storm in interplanetary space caused by successive coronal mass ejections. Nat. Commun. 5, 3481. DOI .

    Article  ADS  Google Scholar 

  • McAllister, A.H., Crooker, N.U.: 1997, Coronal mass ejections, corotating interaction regions, and geomagnetic storms. In: Crooker, N., Joselyn, J.A., Feynman, J. (eds.) Coronal Mass Ejections, Geophys. Monogr. Ser. 99, Am. Geophys. Union, Washington, 279. DOI .

    Chapter  Google Scholar 

  • Owens, M., Cargill, P.: 2004, Predictions of the arrival time of coronal mass ejections at 1 AU: An analysis of the causes of errors. Ann. Geophys. 22(2), 661. DOI .

    Article  ADS  Google Scholar 

  • Richardson, I.G., Cane, H.: 2011, Geoeffectiveness (Dst and Kp) of interplanetary coronal mass ejections during 1995 – 2009 and implications for storm forecasting. Space Weather 9, S07005. DOI .

    Article  ADS  Google Scholar 

  • Schwenn, R., dal Lago, A., Huttunen, E., Gonzalez, W.D.: 2005, The association of coronal mass ejections with their effects near the Earth. Ann. Geophys. 23(3), 1033. DOI .

    Article  ADS  Google Scholar 

  • Sheeley, N.R. Jr., Howard, R.A., Michel, D.J., Koomen, M.J., Schwenn, R., Muehlhaeuser, K.H., Rosenbauer, H.: 1985, Coronal mass ejections and interplanetary shocks. J. Geophys. Res. 90, 163. DOI .

    Article  ADS  Google Scholar 

  • Sugiura, M.: 1953, The solar diurnal variation in the amplitude of sudden commencements of magnetic storms at the geomagnetic equator. J. Geophys. Res. 58, 558. DOI .

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Gonzalez, W.D.: 1997, In: Tsurutani, B.T., Gonzalez, W.D., Kamide, Y. (eds.) The Interplanetary Causes of Magnetic Storms: A Review, Geophys. Monogr. Ser. 98, Am. Geophys. Union, Washington, 77. DOI .

    Chapter  Google Scholar 

  • Tsurutani, B.T., Smith, E.J., Gonzalez, W.D., Tang, F., Akasofu, S.I.: 1988, Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978 – 1979). J. Geophys. Res. 93, 8517. DOI .

    Article  ADS  Google Scholar 

  • Vršnak, B., Zic, T., Falkenberg, T.V., Möstl, C., Vennerstrom, S., Vrbanec, D.: 2010, The role of aerodynamic drag in propagation of interplanetary coronal mass ejections. Astron. Astrophys. 512, A43. DOI .

    Article  ADS  Google Scholar 

  • Wood, B.E., Wu, C.-C., Howard, R.A., Socker, D.G., Rouillard, A.P.: 2011, Empirical reconstruction and numerical modeling of the first geoeffective coronal mass ejection of solar cycle 24. Astrophys. J. 729, 70. DOI .

    Article  ADS  Google Scholar 

  • Wood, B.E., Wu, C.-C., Rouillard, A.P., Howard, R.A., Socker, D.G.: 2012, A coronal hole’s effects on CME shock morphology in the inner heliosphere. Astrophys. J. 755, 43. DOI .

    Article  ADS  Google Scholar 

  • Wood, B.E., Wu, C.-C., Lepping, R.P., Nieves-Chinchilla, T., Howard, R.A., Linton, M.G., Socker, D.G.: 2017, A STEREO survey of magnetic cloud coronal mass ejections observed at Earth in 2008 – 2012. Astrophys. J. Suppl. 229(2), 29, 26 pp. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2002a, Effects of magnetic clouds on the occurrence of geomagnetic storms: the first 4 years of wind. J. Geophys. Res. 107(A10), 1314. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2002b, Effect of solar wind velocity on magnetic cloud-associated magnetic storm intensity. J. Geophys. Res. 107(A11), 1346. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2007, Comparison of the characteristics of magnetic clouds and magnetic cloud-like structures for the events of 1995 – 2003. Solar Phys. 242, 159. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2008, Geomagnetic activity associated with magnetic clouds, magnetic cloud-like structures and interplanetary shocks for the period 1995 – 2003. Adv. Space Res. 41, 335. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2011, Statistical comparison of magnetic clouds with interplanetary coronal mass ejections for solar cycle 23. Solar Phys. 269, 141. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Lepping, R.P.: 2016, Relationships among geomagnetic storms, interplanetary shocks, magnetic clouds, and sunspot number during 1995 – 2012. Solar Phys. 291, 265. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.C., Lepping, R.P., Gopalswamy, N.: 2006, Relationships among magnetic clouds, CMES, and geomagnetic storms. Solar Phys. 239, 449. DOI . ADS .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Fry, C.D., Wu, S.T., Dryer, M., Liou, K.: 2007a, Three-dimensional global simulation of ICME propagation from the Sun to the heliosphere: 12 May 1997 solar event. J. Geophys. Res. 112, A09104, DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Fry, C.D., Wu, S.T., Dryer, M., Thompson, B., Liou, K., Feng, X.S.: 2007b, Three-dimensional global simulation of multiple ICMEs’ interaction and propagation from the Sun to the heliosphere following the 25 – 28 October 2003 solar events, coronal mass ejections. Adv. Space Res. 40, 1827. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Dryer, M., Wu, S.T., Wood, B., Fry, C.D., Liou, K., Plunkett, S.: 2011, Global three-dimensional simulation of the interplanetary evolution of the observed geoeffective CME during the epoch August 1 – 4, 2010. J. Geophys. Res. 116, A12103 13 pp. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Gopalswamy, N., Lepping, R.P., Yashiro, S.: 2013, Characteristics of magnetic clouds/interplanetary coronal mass ejections which caused intense geomagnetic storms. Terr. Atmos. Ocean. Sci. 24, 233. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Lepping, R.P., Hutting, L., Plunkett, S., Howard, R.A., Socker, D.: 2016a, The first super geomagnetic storm of solar cycle 24: “The St. Patrick’s day event (17 March 2015)”. Earth Planets Space 68(1), 151, 12 pp. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Vourlidas, A., Plunkett, S., Dryer, M., Wu, S.T., Mewaldt, R.A.: 2016b, Global magnetohydrodynamic simulation of the March 15, 2013 coronal mass ejection event – Interpretation of the 30 – 80 MeV proton flux. J. Geophys. Res. 121(1), 56. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Vourlidas, A., Plunkett, S., Dryer, M., Wu, S.T., Socker, D., Wood, B.E., Hutting, L., Howard, R.: 2016c, Numerical simulation of multiple CME-driven shocks in the month of 2011 September. J. Geophys. Res. 121, 1839. DOI .

    Article  Google Scholar 

  • Wu, C.-C., Liou, K., Lepping, R.P., Vourlidas, A., Plunkett, S., Socker, D., Wu, S.T.: 2017, Observation of an extremely large-density heliospheric plasma sheet compressed by an interplanetary shock at 1 AU. Solar Phys. 292, 109. DOI .

    Article  ADS  Google Scholar 

  • Wu, C.-C., Liou, K., Plunkett, S., Socker, D., Wang, Y.M., Wood, B.E., Wu, S.T., Dryer, M., Kung, C.: 2019, Modeling inner boundary values at 18 solar radii during solar quiet time for global three-dimensional time-dependent magnetohydrodynamic numerical simulation. J. Atmos. Solar-Terr. Phys. (Submitted). arXiv .

  • Yashiro, S., Gopalswamy, N., Cliver, E.W., Reames, D.V., Kaiser, M.L., Howard, R.A.: 2004, Association of coronal mass ejections and type II radio bursts with impulsive solar energetic particle events, the solar-B mission and the forefront of solar physics. In: Sakurai, T., Sekii, T. (eds.) Proceedings of the Fifth Solar-B Science Meeting Held 12 – 14 November, 2003 in Roppongi, Tokyo, Japan, ASP Conference Series 325, Astron. Soc. Pacific, San Francisco, 401. ADS .

    Google Scholar 

  • Zhang, J., Richardson, I.G., Webb, D.F., Gopalswamy, N., Huttunen, E., Kasper, J., Nitta, N., Poomvises, W., Thompson, B.J., Wu, C.-C., Yashiro, S., Zhukov, Z.: 2007, Solar and interplanetary sources of major geomagnetic storms (\(\mathrm{Dst} < - 100\) nT) during 1996 – 2005. J. Geophys. Res. 112, A10102. DOI .

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All data used in this study are obtained from the public domain. We thank the Wind PI teams and the National Space Science Data Center at NASA/Goddard Space Flight Center, for providing the solar wind plasma and magnetic-field data. The work of C.C. Wu was supported partially by the Chief of Naval Research and the NASA LWS 80HQTR18T0023 and HSWO2R17-0005 grants to the Naval Research Laboratory. The work of K. Liou was supported by the NSF grant 1743118 to the Johns Hopkins University Applied Physics Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Chun Wu.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The authors declare that there is no conflict of interest for publishing this research results in Solar Physics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CC., Liou, K., Lepping, R.P. et al. The 04 – 10 September 2017 Sun–Earth Connection Events: Solar Flares, Coronal Mass Ejections/Magnetic Clouds, and Geomagnetic Storms. Sol Phys 294, 110 (2019). https://doi.org/10.1007/s11207-019-1446-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-019-1446-2

Keywords

Navigation