Skip to main content
Log in

Theoretical and Real Strength of Crystals: Physical Reason for the Difference

  • Published:
Russian Physics Journal Aims and scope

Within the framework of the available theories, the initiation of plastic shear and nucleation cracks in perfect crystals is possible only at a deforming stress close to the theoretical strength. It is shown that a perfect crystal, treated as an open system of nuclei and electrons, loses its stability at applied stresses that are orders of magnitude smaller than the theoretical strength. This helps avoiding the use of the concept of various types of defects present in the bulk and in the surface layer of the crystal. The physical reason for the instability is the excitation of dynamic displacements determined by nonadiabatic transitions of Landau-Zener atoms between the intersecting potential energy surfaces in open nonequilibrium systems. A qualitative explanation of the experimentally observed results is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Korotaev, Elements of the Dislocation Theory [in Russian], NTL Publ., Tomsk (2020).

    Google Scholar 

  2. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press (1954).

  3. A. A. Griffith, Philos. Trans. R. Soc. London, 221, 163 (1921).

    Article  ADS  Google Scholar 

  4. S. A. Sokolov and D. E. Tulin, Phys. Mesomech. 25, 72 (2022).

    Article  Google Scholar 

  5. M. A. Kozhevnikova, Zh. Fizich. Mezomekh., 24(2), 93 (2021).

    Google Scholar 

  6. Y. Jin, Y. Wang, and A. Khachaturyan, Appl. Phys. Lett., 79, 3071 (2001).

    Article  ADS  Google Scholar 

  7. S. N. Zhurkov, V. E. Korsukov, and A. S. Luk'yanenko, et al., JETP Lett., 51, 370 (1990).

    ADS  Google Scholar 

  8. A. M. Davydov, Quantum Mechanics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  9. V. L. Indenbom, Physics of Crystals with Defects, Volume I [in Russian], Tbilisi (1966).

  10. P. Hohenberg and W. Kohn, Phys.Rev., 136, B864 (1964).

    Article  ADS  Google Scholar 

  11. J. C. Tully, J. Chem. Phys., 137, 22A301 (2012).

    Article  Google Scholar 

  12. M. Von Born and R. Oppenheimer, Ann. Phys., 84, No. 20, 457 (1927).

    Article  Google Scholar 

  13. S. G. Psakhie, K. P. Zolnikov, D. S. Kryzhevich, and A. G. Lipnitskii, Phys. Lett., A 349, 509 (2006).

  14. D. Rodney and L. Proville, Phys. Rev., B79, 094108 (2009).

    Article  ADS  Google Scholar 

  15. L. Landau, Phys. Z. Sowjetunion, 2, 46 (1932).

    Google Scholar 

  16. C. Zener, Proc. R. Soc., A 137, 696 (1932).

  17. V. E. Egorushkin and N. V. Mel'nikova, JETP, 1, 103 (1993).

    ADS  Google Scholar 

  18. C. Zhu and H. Nakamura, J. Chem. Phys., 101, 10630 (1994).

    Article  ADS  Google Scholar 

  19. C. Zhu and H. Nakamura, J. Chem. Phys., 102, 7448 (1995).

    Article  ADS  Google Scholar 

  20. L. Yue, L. Yu, C. Xu, et al., Chem. Phys. Chem, 18(10), 1274 (2017), DOI:https://doi.org/10.1002/cphc.201700049.

    Article  Google Scholar 

  21. R. Kapral, J. Phys.: Condens. Matter, 27, 073201 (2015).

    ADS  Google Scholar 

  22. L. B. Zuev and Yu. A. Khon, Phys. Mesomech., 25, 1103 (2022).

    Google Scholar 

  23. Yu. A. Khon and L. B. Zuev, Zh. Fizich. Mezomekh., 25, 111 (2022).

    Google Scholar 

  24. Yu. A. Khon, Russ. Phys. J., 64, No. 4, 612 (2021).

    Article  Google Scholar 

  25. Yu. A. Khon, Russ. Phys. J., 65, No. 3, 545 (2022).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Khon.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 76–80, August, 2022.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khon, Y.A. Theoretical and Real Strength of Crystals: Physical Reason for the Difference. Russ Phys J 65, 1318–1322 (2022). https://doi.org/10.1007/s11182-023-02768-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-023-02768-9

Keywords

Navigation