Skip to main content
Log in

Fundamental role of crystal structure curvature in plasticity and strength of solids

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

In the paper, we use the nonlinear multiscale approach of physical mesomechanics to demonstrate that the scales of local crystal structure curvature in solids play a fundamental role in the generation of strain-induced defects and cracks. It is shown that strain-induced defects arise at the interfaces of 2D planar and 3D crystal subsystems by the mechanism of “laser pumping” and cracks nucleate as structural phase decay in the zones of crystal structure curvature where the nonequilibrium thermodynamic potential or so-called Gibbs energy is higher than zero. Nonlinear fracture mechanics eliminates the problem of singularity 1/r in equations of crack growth but requires accounting for local lattice curvature at the crack tip.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panin, V.E., Egorushkin, V.E., and Panin, A.V., Nonlinear Wave Processes in a Deformable Solid as in a Multiscale Hierarchically Organized System, Physics-Uspekhi, 2012, vol. 55, no. 12, pp. 1260–1267.

    Article  ADS  Google Scholar 

  2. Panin, V.E., Egorushkin, V.E., and Panin, A.V., The Plastic Shear Channeling Effect and the Nonlinear Waves of Localized Plastic Deformation and Fracture, Phys. Mesomech., 2010, vol. 13, no. 5–6, pp. 215–232.

    Article  Google Scholar 

  3. Panin, V.E. and Egorushkin, V.E., Fundamental Role of Local Curvature of Crystal Structure in Plastic Deformation and Fracture of Solids, Physical Mesomechanics of Multilevel Systems 2014: AIP Conf. Proc, 2014, vol. 1623, pp. 475–478.

    Google Scholar 

  4. Guzev, M.A. and Dmitriev, A.A., Bifurcational Behavior of Potential Energy in a Particle System, Phys. Mesomech., 2013, vol. 16, no. 4, pp. 287–293.

    Article  Google Scholar 

  5. Lotkov, A.I., Baturin, A.A., Grishkov, V.N., and Kopylov, V.I., Possible Role of Crystal Structure Defects in Grain Structure Nanofragmentation under Severe Cold Plastic Deformation of Metals and Alloys, Phys. Mesomech., 2007, vol. 10, no. 3–4, pp. 179–189.

    Article  Google Scholar 

  6. Schafler, E., Steiner, G., Korznikova, E., Kerber, M., and Zehetbauer, M.J., Lattice Defect Investigation of ECAP-Cu by Means of X-ray Line Profile Analysis, Calorimetry and Electrical Resistometry, Mat. Sci. Eng. A, 2005, vol. 410–411, pp. 169–173.

    Article  Google Scholar 

  7. Korznikova, E., Schafler, E., Steiner, G., and Zehetbauer, M.J., Measurements of Vacancy Type Defects in SPD Deformed Ni, Ultrafine Grained Materials IV, Zhu, Y.T., Langdon, T.G., Horita, Z., Zehetbauer, M.J., Semiatin, S.L., Lowe, T.C., Eds., Warrendate, PA: The Minerals, Metals & Materials Society (TMS), 2006, pp. 97–102.

    Google Scholar 

  8. Lotkov, A.I., Baturin, A.A., Grishkov, V.N., Kuznetsov, P.V., Klimenov, V.A., and Panin, V.E., Structural Defects and Mesorelief of the Titanium Nickelide Surface after Severe Plastic Deformation by an Ultrasonic Method, Fiz. Mezomekh., 2005, vol. 8, spec. iss., pp. 109–112.

    Google Scholar 

  9. Ohkudo, H., Tang, Z., Nagai, Y., et al., Positron Annihilation Study of Vacancy-Type Defects in High-Speed Deformed Ni, Cu and Fe, Mat. Sci. Eng. A, 2003, vol. 95, pp. 95–101.

    Article  Google Scholar 

  10. Zehetbauer, M.J., Steiner, G., Schafler, E., Korznikov, A., and Korznikova, E., Deformation Induced Vacancies with Severe Plastic Deformation: Measurement and Modeling, Mater. Sci. Forum, 2006, vol. 503–504, pp. 57–64.

    Article  Google Scholar 

  11. Collins, G., and Sinha, P., Structural, Thermal and Deformation Induced Point Defects in PdIn, Hyperfine Interact., 2000, vol. 130, no. 1–4, pp. 151–179.

    Article  ADS  Google Scholar 

  12. Ditenberg, I.A., Korznikova, E.A., Tyumentsev, A.N., Setman, D., Kerber, M., and Zehetbauer, M.J., Nonequilibrium Structural States in Nickel after Large Plastic Deformation, Lett. Mater., 2014, vol. 4(2), pp. 100–103.

    Google Scholar 

  13. Cheremskii, P.G., Slezov, V.V., and Betekhtin, V.I., Pores in a Solid, Moscow: Energoatomizdat, 1990.

    Google Scholar 

  14. Gumerov, A.G., Zainullin, R.S., Yamaleev, K.M., and Roslyakov, A.V., Ageing of Pipelines, Moscow: Nedra, 1995.

    Google Scholar 

  15. Filippov, G.A., Livanova, O.V., and Dmitriev, V.F., Metal Degradation during Long-Term Performance of Main Pipelines, Stal, 2003, no. 2, pp. 84–87.

    Google Scholar 

  16. Mikryukov, V.R., Ivanov, Yu.F., and Gromov, V.E., Physical Nature of Degradation of Properties, Phase Composition and Defect Substructure of Reinforcing Steel during Long-Term Performance, Novokuznetsk: Izd-vo SibGIU, 2007.

    Google Scholar 

  17. Odesskii, P.D., Degradation of Structural Steels, Zavod. Lab. Diagnost. Mater., 2003, vol. 69, no. 10, pp. 86–92.

    Google Scholar 

  18. Bolshakov, A.M., Golikov, N.I., Syromyatnikova, A.S., Alekseev, A.A., and Tikhonov, R.P., Fracture and Damage during Long-Term Performance of Oil and Gas Industry Facilities, Gaz. Promyshl., 2007, no. 7, pp. 89–91.

    Google Scholar 

  19. Bolshakov, A.M., Analysis of Fracture and Defects in Main Gas Pipelines and Reservoirs of the North, Gaz. Promyshl., 2010, no. 5, pp. 52–53.

    Google Scholar 

  20. Grigorieva, T.F., Barinova, A.P., and Lyakhov, N.Z., Me-chanochemical Synthesis in Metal Systems, Novosibirsk: Parallel, 2008.

    Google Scholar 

  21. Panin, V.E., Elsukova, T.F., Egorushkin, V.E., Vaulina, O.Yu., and Pochivalov, Yu.I., Nonlinear Wave Effects of Curvature Solitons in Surface Layers of High-Purity Aluminum Polycrystals under Severe Plastic Deformation. I. Experiment, Phys. Mesomech., 2008, vol. 11, no. 1–2, pp. 63–72.

    Article  Google Scholar 

  22. Panin, V.E., Elsukova, T.F., and Popkova, Yu.F., Channeled Local Structural Transformations in Polycrystal Surface Layers in Alternate Cyclic Bending, Phys. Mesomech., 2011, vol. 14, no. 1–2, pp. 1–9.

    Article  Google Scholar 

  23. Zavalishin, V.A., Deryagin, A.I., and Sagaradze, V.V., Redistribution of Alloying Elements and Variation of Magnetic Properties Induced by Cold Strain in Stable Austenitic Chromium-Nickel Steels I. Experimental Observation of the Effect, Fiz. Met. Metalloved, 1993, vol. 75, no. 2, pp. 90–99.

    Google Scholar 

  24. Sagaradze, V.V., Diffusion Transformations in Steels due to Cold Deformation, Met. Sci. Heat Treat., 2008, vol. 50, no. 9–10, pp. 422–429.

    Article  Google Scholar 

  25. Derevyagina, L.S., Panin, V.E., Strelkova, I.L., et al., Meso- and Macroscale Fracture of Submicrocrystalline α-Fe under Uniaxial Tension, Deform. Razrush. Mater., 2006, vol. 2, no. 2, pp. 20–24.

    Google Scholar 

  26. Regel, V.R. and Akchurin, M.Sh., Effect of the Near-Surface Structure and Properties on Mechanical Properties of the Crystal, Defects in Ferroelectrics, Leningrad: Nauka, 1981, pp. 88–96.

    Google Scholar 

  27. Megchiche, E.H., Perusin, S., Barthelat, J.-C., and Mijoule, C., Density Functional Calculations of the Formation and Migration Enthalpies of Monovacancies in Ni: Comparison of Local and Nonlocal Approaches, Phys. Rev. B, 2006, vol. 74, no. 6, pp. 064111-1–064111-9.

    Article  ADS  Google Scholar 

  28. Panin, V.E., Panin, A.V., and Moiseenko, D.D., Physical Mesomechanics of a Deformed Solid as a Multilevel System. II. Chessboard-Like Mesoeffect of the Interface in Heterogeneous Media in External Fields, Phys. Mesomech, 2007, vol. 10, no. 1–2, pp. 5–14.

    Article  Google Scholar 

  29. Cherepanov, G.P., On the Theory of Thermal Stresses in Thin Bonding Layer, J. Appl. Phys., 1995, vol. 78, no. 11, pp. 6826–6832.

    Article  ADS  Google Scholar 

  30. Panin, V.E., Dudarev, E.F., and Bushnev, L.S., Structure and Mechanical Properties of Substitution Solid Solutions, Moscow: Metallurgiya, 1971.

    Google Scholar 

  31. Lins, I.F.C., Sandim, H.R.Z., Kestenbach, H.I., Raabe, D., and Vecchio, R.S., A Microstructural Investigation of Adiabatic Shear Bands in an Interstitial Free Steel, Mater. Sci. Eng. A, 2007, vol. 457, pp. 205–218.

    Article  Google Scholar 

  32. Cherepanov, G.P., Fracture Mechanics, Moscow-Izhevsk: Izd-vo Inst. Komp. Issl., 2012.

    Google Scholar 

  33. Wnuk, M.P., Alavi, M., and Rouzbehani, A., Comparison of Time Dependent Fracture in Viscoelastic and Ductile Solids, Phys. Mesomech., 2012, vol. 15, no. 1–2, pp. 13–25.

    Article  Google Scholar 

  34. Panin, V.E., Fracture Mechanisms of a Solid as a Nonlinear Hierarchically Organized System, Proc. Eur. Conf. Fracture 19, Kazan, Russia, 2012, Kazan: Kazan Sci. Center RAS, 2012.

    Google Scholar 

  35. Grebneva, V.S., Ermishkin, V.A., Krasavin, D.L., et al., Influence of Structural Factors on the Macro- and Micromechanisms of Fracture of Austenitic Dispersion-Hardening Alloys with an Interrupted Type of Decomposition, Strength Mater., 1992, vol. 24, no. 10, pp. 593–598; no. 11, pp. 668–672.

    Article  Google Scholar 

  36. Moiseenko, D.D., Panin, V.E., Maksimov, P.V., Panin, S.V., and Berto, F., Material Fragmentation as Dissipative Process of Microrotation Sequence Formation: Hibrid Model of Excitable Cellular Automata, Physical Mesomechanics of Multilevel Systems 2014: AIP Conf. Proc, 2014, vol. 1623, pp. 427–430.

    Google Scholar 

  37. Panin, V.E., Sergeev, V.P., Moiseenko, D.D., and Pochivalov, Yu.I., Scientific Basis for the Design of Heat- and Wear-Resistant Multilayer Si-Al-N/Zr-Y-O Coatings, Fiz. Mezomekh., 2011, vol. 14, no. 6, pp. 5–14.

    Google Scholar 

  38. Panin, V.E., Elsukova, T.F., and Popkova, Yu.F., The Role of Curvature of the Crystal Structure in the Formation of Micropores and Crack Development under Fatigue Fracture of Commercial Titanium, Dokl. RAN, 2013, vol. 58, no. 11, pp. 472–475.

    Google Scholar 

  39. Panin, V.E. and Egorushkin, V.E., Nanostructural States in Solids, Phys. Met. Metallogr., 2010, vol. 110, no. 5, pp. 464–473.

    Article  ADS  Google Scholar 

  40. Panin, V.E., Sergeev, V.P., Panin, A.V., and Pochivalov, Yu.I., Nanostructuring of Surface Layers and Production of Nanostructured Coatings as an Effective Method of Strengthening Modern Structural and Tool Materials, Phys. Met. Metallogr., 2007, vol. 104, no. 6, pp. 627–636.

    Article  ADS  Google Scholar 

  41. Panin, V.E., Sergeev, V.P., and Panin, A.V., Nanostructuring of Surface Layers in Structural Materials and Deposition of Nanostructured Coatings, Tomsk: Izd-vo TPU, 2013.

    Google Scholar 

  42. Trefilov, V.I., Milman, Yu.V., and Firstov, S.A., Physical Foundations of Strength of Refractory Metals, Kiev: Naukova Dumka, 1975.

    Google Scholar 

  43. Panin, V.E., Derevyagina, L.S., Lemeshev, N.M., Korznikov, A.V., Panin, A.V., and Kazachenok, M.S., On the Nature of Low-Temperature Brittleness of BCC Steels, Phys. Mesomech, 2014, vol. 17, no. 2, pp. 89–96.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. E. Panin.

Additional information

Original Russian Text © V.E. Panin, A.V. Panin, T.F. Elsukova, Yu.F. Popkova, 2014, published in Fizicheskaya Mezomekhanika, 2014, Vol. 17, No. 6, pp. 7–18.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panin, V.E., Panin, A.V., Elsukova, T.F. et al. Fundamental role of crystal structure curvature in plasticity and strength of solids. Phys Mesomech 18, 89–99 (2015). https://doi.org/10.1134/S1029959915020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959915020010

Keywords

Navigation