Skip to main content
Log in

Oxidation of Carbon Monoxide on the Surface of a Metal Oxide Structure

  • PHYSICS OF SEMICONDUCTORS AND DIELECTRICS
  • Published:
Russian Physics Journal Aims and scope

The oxidation of carbon monoxide on the surface of the Au/Al2O3/Mo(110) structure was studied using modern methods of surface diagnostics. It is shown that at a high degree of identity of the structural, electronic, and adsorption properties of the Au/Al2O3/Mo(110) system with various aluminum oxide film thicknesses (2, 4, 6, and 8 monolayers), the oxidation efficiency of CO molecules desorbed into the gas phase decreases exponentially with increasing oxide film thickness. Taking into account the well-known fact that the efficiency of CO oxidation depends on the amount of the excess charge acquired by the gold nanoparticle, it is concluded that charge tunneling through the oxide layer increases the efficiency of the reaction on the surface of the studied metal oxide system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Vedrine, Metal Oxides in Heterogeneous Catalysis, Elsevier (2018).

  2. S. Chen, F. Xiong, and W. Huang, Surf. Sci. Rep., 74, 100471 (2019).

    Article  Google Scholar 

  3. A. Picone, M. Riva, A. Brambilla, et al., Surf. Sci. Rep., 71, 32 (2016).

    Article  ADS  Google Scholar 

  4. Y. Cai and Y. P. Feng, Progr. Surf. Sci., 91, 183 (2016).

    Article  Google Scholar 

  5. K. Honkala, Surf. Sci. Rep., 69, 366 (2014).

    Article  ADS  Google Scholar 

  6. K. Okazaki, Y. Morikawa, S. Tanaka, et al., Phys. Rev. B, 69, 235404 (2014).

    Article  ADS  Google Scholar 

  7. A. Sanchez, S. Abbet, U. Heiz, et al., J. Phys. Chem. A, 103, 9573 (1999).

    Article  Google Scholar 

  8. Z. Yan, S. Chinta, A. A. Mohamed, et al., J. Am. Chem. Soc., 127, 1604 (2005).

    Article  Google Scholar 

  9. I. V. Tvauri, B. E. Gergieva, et al., Solid State Commun., 42, 213−214 (2015).

    Google Scholar 

  10. G. Yoon, H. Hakkinen, and U. Landman, J. Phys. Chem. A, 107, 4066 (2003).

    Article  Google Scholar 

  11. N. Lopez, J. K. Norskov, T. V.W. Janssens, et al., J. Catal., 225, 86 (2004).

    Article  Google Scholar 

  12. Q. Fu and T. Wagner, Surf. Sci. Rep., 62, 431 (2007).

    Article  ADS  Google Scholar 

  13. M. Heemeier, S. Stempel, S. K. Shaikhutdinov, et al., Surf. Sci., 523, 103 (2003).

    Article  ADS  Google Scholar 

  14. J. Libuda, M. Frank, A. Sandell, et al., Surf. Sci., 384, 106 (1997).

    Article  ADS  Google Scholar 

  15. M. Baumer, J. Biener, and R. J. Madix, Surf. Sci., 432, 189 (1999).

    Article  ADS  Google Scholar 

  16. J. A. Rodriguez, M. Kuhn, and J. Hrbek, J. Phys. Chem., 100, 18240 (1996).

    Article  Google Scholar 

  17. C. J. Hirschmugl, Surf. Sci., 500, 577 (2002).

    Article  ADS  Google Scholar 

  18. D. W. Goodman, J. Vac. Sci. Technol. A, 14, 1526 (1996).

    Article  ADS  Google Scholar 

  19. M.-C. Wu and D. W. Goodman, J. Phys. Chem., 98, 9874 (1994).

    Article  Google Scholar 

  20. G. S. Grigorkina, I. V. Tvauri, et al., Solid State Commun., 233, 11 (2016).

    Article  ADS  Google Scholar 

  21. R. M. Jaeger, H. Kuhlenbeck, H.-J. Freund, et al., Surf. Sci., 259, 235 (1991).

    Article  ADS  Google Scholar 

  22. C. Becker, J. Kandler, H. Raaf, et al., J. Vac. Sci. Technol. A, 16, 1000 (1998).

    Article  ADS  Google Scholar 

  23. D. R. Jennison, C. Verdozzi, P. A. Schultz, and M. P. Sears, Phys. Rev. B, 59, 15605 (1999).

    Article  ADS  Google Scholar 

  24. T. T. Magkoev and G. G. Vladimirov, J. Phys.: Condens. Matter., 13, L655 (2001).

    ADS  Google Scholar 

  25. T. T. Magkoev, K. Christmann, A. M.C. Moutinho, and Y. Murata, Surf. Sci., 515, 538 (2002).

    Article  ADS  Google Scholar 

  26. T. T. Magkoev, G. G. Vladimirov, D. Remar, and A. M.C. Moutinho, Solid State Commun., 122, 341 (2002).

    Article  ADS  Google Scholar 

  27. G. Frederick, G. Apai, and T. N. Rhodin, Phys. Rev. B, 44, 1880 (1991).

    Article  ADS  Google Scholar 

  28. J. L.G. Fierro and J. F.G. De La Banda, Catal. Rev., 28, 265 (1986).

    Article  Google Scholar 

  29. C. T. Campbell, Surf. Sci. Rep., 27, 1 (1997).

    Article  ADS  Google Scholar 

  30. A. Zecchina, D. Scarano, S. Bordiga, et al., Catal. Today, 27, 403 (1996).

    Article  Google Scholar 

  31. G. Renaud, B. Villette, I. Vilfan, and A. Bourret, Phys. Rev. Lett., 73, 1825 (1994).

    Article  ADS  Google Scholar 

  32. M. Casarin, C. Maccato, and A. Vittadini, J. Phys. Chem. B, 106, 795 (2002).

    Article  Google Scholar 

  33. S. Ossicini, R. Memeo, and F. Ciccacci, J. Vac. Sci. Technol. A, 3, 387 (1985).

    Article  ADS  Google Scholar 

  34. A. Bogicevic and D. R. Jennison, Phys. Rev. Lett., 82, 4050 (1999).

    Article  ADS  Google Scholar 

  35. A. E. Mattsson and D. R. Jennison, Surf. Sci., 520, L611 (2002).

    Article  ADS  Google Scholar 

  36. Y. Cao, S. Hu, M. Yu, et al., Phys. Chem. Chem. Phys., 18, 17660 (2016).

    Article  Google Scholar 

  37. A. M. Marquez, J. Graciani, and J. F. Sanz, Theor. Chem. Acc., 126, 265 (2010).

    Article  Google Scholar 

  38. R. Meyer, C. Lemire, Sh. K. Shaikhutdinov, and H.-J. Freund, Gold Bulletin, 37, 72 (2004).

    Article  Google Scholar 

  39. R. Grisel, K. Weststrate, A. Gluhoi, and B. E. Nieuwenhuys, Gold Bulletin, 35, 39 (2002).

    Article  Google Scholar 

  40. A. Hussain, D. C. Ferre, J. Gracia, et al., Surf. Sci., 603, 2734 (2009).

    Article  ADS  Google Scholar 

  41. S. P. Davis, M. C. Abrams, J. W. Brauet, Fourier-Transform Spectroscopy, Academic Press, New York, London (2001).

    Google Scholar 

  42. G. Doyen and G. Ertl, Surf. Sci., 43, 197 (1974).

    Article  ADS  Google Scholar 

  43. A. Hussain, A. J. Muller, B. E. Nieuwenhuys, et al., Top Catal., 54, 415 (2011).

    Article  Google Scholar 

  44. Y.-G. Wang, Y. Yoon, V.-A. Glezakou, et al., J. Am. Chem. Soc., 135, 10673 (2013).

    Article  Google Scholar 

  45. M. F. Camellone, P. M. Kowalski, and D. Marx, Phys. Rev. B, 84, 035413 (2011).

    Article  ADS  Google Scholar 

  46. C. Harding, V. Habibpour, S. Kunz, et al., J. Am. Chem. Soc., 131, 538 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. G. Ashkhotov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 3, pp. 81–87, March, 2022.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magkoev, T.T., Silaev, I.V., Ashkhotov, O.G. et al. Oxidation of Carbon Monoxide on the Surface of a Metal Oxide Structure. Russ Phys J 65, 481–487 (2022). https://doi.org/10.1007/s11182-022-02658-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-022-02658-6

Keywords

Navigation