Skip to main content
Log in

Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals

  • Published:
Russian Physics Journal Aims and scope

Special features of spatial self-action of light fields in nonlinear optical photonic waveguide structures formed in strontium barium niobate and lithium niobate electro-optic crystals are discussed. The main methods of forming such structures including photorefractive waveguide elements and systems are briefly considered. The formation of spatial optical solitons in planar waveguides based on lithium niobate and strontium barium niobate crystals as well as in one-dimensional photonic lattices in lithium niobate is demonstrated experimentally for light beams of microwatt power. In regimes of spatial optical solitons, channel optical waveguides are formed not only in the planar waveguides, but also in the volume of photorefractive lithium niobate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals, Academic Press, San Diego (2003).

    Google Scholar 

  2. D. N. Christodoulides, F. Lederer, and Y. Silberberg, Nature, 424, 817–823 (2003).

    Article  ADS  Google Scholar 

  3. R. V. Schmidt and I. P. Kaminow, Appl. Phys. Lett., 25, No. 8, 458–460 (1974).

    Article  ADS  Google Scholar 

  4. D. Kip, Appl. Phys., B67, 131 (1998).

    Article  ADS  Google Scholar 

  5. J. L. Jackel, C. E. Rice, and J. J. Veselka, Appl. Phys. Lett., 41, No. 7, 607 (1982).

    Article  ADS  Google Scholar 

  6. P. Moretti, P. Thevenard, K. Wirl, et al., Ferroelectrics, 128, 13 (1992).

    Article  Google Scholar 

  7. D. Kip, S. Aulkemeyer, and P. Moretti, Opt. Lett., 20, 1256 (1995).

    Article  ADS  Google Scholar 

  8. F. Chen, J. Appl. Phys., 106, No. 8, 081101 (2009).

    Article  ADS  Google Scholar 

  9. J. Olivares, G. Garcia, A. Garcia-Navarro, et al., Appl. Phys. Lett., 86, No. 18, 183501 (2005).

    Article  ADS  Google Scholar 

  10. E. I. Leonov, S. E. Khabarov, M. S. Vershinin, et al., Sov. Phys. Tech. J., 30, 1307 (1985).

    Google Scholar 

  11. O. Eknoyan, H. F. Taylor, Z. Tang, et al., Appl. Phys. Lett., 60, 407 (1992).

    Article  ADS  Google Scholar 

  12. O. Eknoyan, H. F. Taylor, J. M. Marx, et al., Ferroelectrics, 205, 147 (1998).

    Article  Google Scholar 

  13. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics [in Russian], Nauka, Saint Petersburg (1992).

    Google Scholar 

  14. A. Yariv and P. Yukh, Optical Waves in Crystals [Russian translation], Mir, Moscow (1987).

    Google Scholar 

  15. J. Burghoff, C. Grebing, S. Nolte, et al., Appl. Surf. Sci., 253, 7899–7902 (2007).

    Article  ADS  Google Scholar 

  16. F. Chen and J. R. Vazquez de Aldana, Laser Photon. Rev., 8, No. 2, 251–275 (2014).

    Article  Google Scholar 

  17. F. Chen, Laser Photon. Rev., 6, No. 5, 622–640 (2012).

    Article  Google Scholar 

  18. J. Safioui, F. Devaux, and M. Chauvet, Opt. Express, 17, No. 24, 22209–22216 (2009).

    Article  ADS  Google Scholar 

  19. J. W. Fleischer, T. Carmon, M. Segev, et al., Phys. Rev. Lett., 90, 023902 (2003).

    Article  ADS  Google Scholar 

  20. D. Neshev, E. Ostrovskaya, Y. Kivshar, et al., Opt. Lett., 28, 710–712 (2003).

    Article  ADS  Google Scholar 

  21. J. W. Fleischer, M. Segev, N. K. Efremidis, et al., Nature, 422, No. 6928, 147–150 (2003).

    Article  ADS  Google Scholar 

  22. D. Jaque, N. D. Psaila, R. R. Thomson, et al., Appl. Phys. Lett., 96, 191104 (2010).

    Article  ADS  Google Scholar 

  23. F. Chen, M. Stepić, C. E. Rüter, et al., Opt. Express, 13, No. 11, 4314–4324 (2005).

    Article  ADS  Google Scholar 

  24. H. S. Eisenberg, Y. Silberberg, R. Morandotti, et al., Phys. Rev. Lett., 81, No. 16, 3383–3386 (1998).

    Article  ADS  Google Scholar 

  25. K. V. Shandarova, V. M. Shandarov, E. V. Smirnov, et al., Russ. Phys. J., 49, No. 9, 964–969 (2006).

    Article  Google Scholar 

  26. A. A. Sukhorukov, Phys. Rev. Lett., 96, 113902 (2006).

    Article  ADS  Google Scholar 

  27. E. Smirnov, C. E. Rüter, D. Kip, et al., Appl. Phys., B88, No. 3, 359–362 (2007).

    Article  ADS  Google Scholar 

  28. K. Shandarova, V. Shandarov, T. Yang, et al., Proc. SPIE, 7354, 735405 (2009).

    Article  Google Scholar 

  29. M. Segev, B. Crosignani, A. Yariv, et al., Phys. Rev. Lett., 68, 923 (1992).

    Article  ADS  Google Scholar 

  30. M. Morin, G. Duree, G. Salamo, et al., Opt. Lett., 20, 2066 (1995).

    Article  ADS  Google Scholar 

  31. D. Kip, M. Wesner, V. Shandarov, et al., Opt. Lett., 23, 921 (1998).

    Article  ADS  Google Scholar 

  32. M. Wesner, C. Herden, D. Kip, et al., Opt. Commun., 188, 69 (2001).

    Article  ADS  Google Scholar 

  33. M. Wesner, C. Herden, and D. Kip, Appl. Phys., B72, 733 (2001).

    Article  ADS  Google Scholar 

  34. D. Kip, E. Krätzig, V. Shandarov, et al., Opt. Lett., 23, 343 (1998).

    Article  ADS  Google Scholar 

  35. M. Taya, M. C. Bashaw, M. M. Fejer, et al., Phys. Rev., A52, 3095 (1995).

    Article  ADS  Google Scholar 

  36. V. Shandarov, D. Kip, M. Wesner, et al., J. Opt., A2, 500 (2000).

    ADS  Google Scholar 

  37. M. Chauvet, S. Chauvin, and H. Maillotte, Opt. Lett., 26, No. 17, 1344–1346 (2001).

    Article  ADS  Google Scholar 

  38. V. G. Kruglov, V. M. Shandarov, Ya. Tan, et al., Quant. Electr., 38, No. 11, 1045–1047 (2008).

  39. V. G. Kruglov, V. Shandarov, Y. Tan, et al., Proc. SPIE, 7138, 71381M (2008).

    Article  ADS  Google Scholar 

  40. E. Fazio, F. Renzi, R. Rinaldi, et al., Appl. Phys. Lett., 85, 2193 (2004).

    Article  ADS  Google Scholar 

  41. V. M. Shandarov and K. V. Shandarova, Quant. Electr., 35, No. 10, 921–922 (2005).

    Article  ADS  Google Scholar 

  42. Yu. S. Kivshar, Opt. Lett., 18, No. 14, 1147–1149 (1993).

    Article  ADS  Google Scholar 

  43. M. Matuszewski, C. R. Rosberg, D. N. Neshev, et al., Opt. Express, 14, 254 (2006).

    Article  ADS  Google Scholar 

  44. M. Stepic, E. Smirnov, C. E. Rüter, et al., Opt. Lett., 32, No. 7, 823–825 (2007).

    Article  ADS  Google Scholar 

  45. A. Kanshu, C. E. Rüter, D. Kip, et al., Opt. Express, 19, No. 2, 1158 (2011).

    Article  ADS  Google Scholar 

  46. A. Szameit, I. L. Garanovich, M. Heinrich, et al., Phys. Rev., A78, 031801R (2008).

    Article  ADS  Google Scholar 

  47. K. Shandarova, C. E. Rüter, D. Kip, et al., Phys. Rev. Lett., 102, No. 12, 123905 (2009).

    Article  ADS  Google Scholar 

  48. A. Kanshu, C. E. Rüter, D. Kip, et al., Appl. Phys., B95, 537–543 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Shandarov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 10, pp. 13–21, October, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shandarov, V.M. Self-Action of Light Fields in Waveguide Photon Structures Based on Electro-Optic Crystals. Russ Phys J 58, 1378–1386 (2016). https://doi.org/10.1007/s11182-016-0659-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11182-016-0659-1

Keywords

Navigation