Skip to main content
Log in

Surface Waves at the Boundary of a Medium with a Refractive Index Switching and a Crystal with the Diffusion-Type Photorefractive Nonlinearity

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

It is formulated a model, within which, regularities for formation of nonlinear surface waves with a specific field structure are described. It is shown that there are two new types of waves of chosen polarization, which propagate along the contact of a photorefractive crystal with diffusion nonlinearity and a nonlinear optical medium with switching. Nonlinearity in this medium is modelled by a stepwise changing the refractive index depending on the field amplitude. The field structure in the obtained surface waves consists of three components in different regions of contacting media. The propagation of a localized light beam along the boundary at the near-boundary region results in formation of an area of a finite width, which has a refractive index that is different from the remaining medium. The field exponentially decreases in the region behind this domain when moving away from the near-boundary region. In a photorefractive crystal, the field can decrease with oscillations or without oscillations. The dependence of the propagation constant on optical characteristics of media and guiding parameters is derived in the explicit analytical form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. Ironside, Semiconductor Integrated Optics for Switching Light (Morgan and Claypool, Bristol, UK, 2017).

    Book  Google Scholar 

  2. A. Goodarzi, M. Ghanaatshoar, and M. Mozafari, Sci. Rep. 8, 15340 (2018).

    Article  ADS  Google Scholar 

  3. H. Kishikawa and N. Goto, Opt. Eng. 46, 044602 (2007).

    Article  ADS  Google Scholar 

  4. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  5. T. H. Zhang, X. K. Ren, B. H. Wang, C. B. Lou, Z. J. Hu, W. W. Shao, Y. H. Xu, H. Z. Kang, J. Yang, D. P. Yang, L. Feng, and J. J. Xu, Phys. Rev. A 76, 013827 (2007).

    Article  ADS  Google Scholar 

  6. E. C. Jarque and V. A. Malyshev, Opt. Commun. 142, 66 (1997).

    Article  ADS  Google Scholar 

  7. A. Schuzgen, N. Peyghambarian, and S. Hughes, Phys. Status Solidi B 206, 125 (1999).

    Article  ADS  Google Scholar 

  8. A. E. Kaplan, IEEE J. Quantum Electron. 21, 1538 (1985).

    Article  ADS  Google Scholar 

  9. R. H. Enns, S. S. Rangnekar, and A. E. Kaplan, Phys. Rev. A 35, 466 (1987).

    Article  ADS  Google Scholar 

  10. P. I. Khadzhi and L. V. Fedorov, Sov. Tech. Phys. 36, 564 (1991).

    Google Scholar 

  11. N. N. Beletskii and E. A. Gasan, Phys. Solid State 36, 357 (1994).

    ADS  Google Scholar 

  12. K. D. Lyakhomskaya and P. I. Khadzhi, Tech. Phys. 45, 1457 (2000).

    Article  Google Scholar 

  13. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, L. I. Ivleva, P. A. Lykov, and N. V. Bogodaev, Quantum Electron. 40, 437 (2010).

    Article  ADS  Google Scholar 

  14. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 41, 924 (2011).

    Article  ADS  Google Scholar 

  15. D. Kh. Usievich, B. A. Nurligareev, V. A. Sychugov, and L. I. Ivleva, Quantum Electron. 43, 14 (2013).

    Article  ADS  Google Scholar 

  16. S. E. Savotchenko, Solid State Commun. 296, 32 (2019).

    Article  ADS  Google Scholar 

  17. S. E. Savotchenko, JETP Lett. 109, 744 (2019).

    Article  ADS  Google Scholar 

  18. S. E. Savotchenko, J. Exp. Theor. Phys. 129, 159 (2019).

    Article  ADS  Google Scholar 

  19. S. E. Savotchenko, Quantum Electron. 49, 850 (2019).

    Article  ADS  Google Scholar 

  20. S. E. Savotchenko, Kondens. Sredy Mezhfaz Granitsy 21, 441 (2019).

    Google Scholar 

  21. S. E. Savotchenko, Russ. Phys. J. 63 (2020, in press).

  22. S. E. Savotchenko, Opt. Spectrosc. 128, 345 (2020).

    Article  ADS  Google Scholar 

  23. S. E. Savotchenko, Phys. Solid State 62 (2020, in press).

  24. V. G. Besprozvannykh and V. P. Pervadchuk, Nonlinear Effects in Fiber Optics (Perm. Nats. Issled. Politekhn. Univ., Perm’, 2011) [in Russian].

  25. M. Liu, D. A. Powell, Y. Zarate, and I. V. Shadrivov, Phys. Rev. X 8, 031077 (2018).

    Google Scholar 

  26. Surface Waves: New Trends and Developments, Ed. by F. Ebrahimi (Intech Open, Rijeka, Croatia, 2018).

    Google Scholar 

  27. Y. Jia, Y. Liao, L. Wu, Y. Shan, X. Dai, H. Cai, Y. Xiang, and D. Fan, Nanoscale 7, 4515 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Savotchenko.

Ethics declarations

Authors declare that they have no conflicts of interest.

Additional information

Translated by D. Churochkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. Surface Waves at the Boundary of a Medium with a Refractive Index Switching and a Crystal with the Diffusion-Type Photorefractive Nonlinearity. Phys. Solid State 62, 1415–1420 (2020). https://doi.org/10.1134/S1063783420080284

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420080284

Keywords:

Navigation