Skip to main content
Log in

Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Photorefractive solitons have been studied in a waveguide that is made of centrosymmetric material. The dynamical equations pertaining to characteristics of solitons have been derived under paraxial ray and Wentzel–Kramers–Brillouin (WKB) approximations. It has been predicted that the planar waveguide structure enhances self-focusing effect and reduces the threshold power requirement for soliton formation. The waveguide that is embedded in the photorefractive crystal leads to the trapping of low power solitary wave which otherwise would not have formed spatial solitons at this low power in this material. The minimum requirement of power for self-trapping in the material decreases with the increase in the value of waveguide co-efficient. The existence of bistable states has also been predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Hasegawa, Y.K. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995)

    MATH  Google Scholar 

  2. L.F. Mollenaur, R.G. Stolen, J.P. Gordon, Experimental observation of picoseconds pulsenarrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095 (1980)

    Article  ADS  Google Scholar 

  3. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: Fibers to Photonic Crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  4. S. Medhekar, S. Konar, M.S. Sodha, Self-tapering of elliptic Gaussian beams in an elliptic-core nonlinear fiber. Opt. Lett. 20, 2192 (1995)

    Article  ADS  Google Scholar 

  5. S. Konar, M. Mishra, Nonlinear evolution of cosh-Gaussian laser beams and laser beams and generation of flat top spatial solitons in cubic quintic nonlinear media. Phys. Lett. A 362, 505–510 (2007)

    Article  ADS  Google Scholar 

  6. M.S. Sodha, S. Konar, K.P. Maheshwari, Steady-state self-focusing of rippled laser beams in plasmas; arbitrary nonlinearity. J. Plasma Phys. 48, 107–118 (1992)

    Article  ADS  Google Scholar 

  7. M. Mishra, S. Konar, High bit rate dense dispersion managed optical communication systems with distributed amplification. Prog. Electromag. Res. 78, 301–320 (2008)

    Article  Google Scholar 

  8. M. Segev, B. Crosignani, A. Yariv, B. Fischer, Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923–927 (1992)

    Article  ADS  Google Scholar 

  9. G.C. Duree, J.L. Slultz, G. Salamo, M. Segev, A. Yariv, B. Crosignani, P. Di Porto, E. Sharp, R.R. Neurgaonkar, Observation of self-trapping of an optical beam due to th photorefractive effect. Phys. Rev. Lett. 71, 533 (1993)

    Article  ADS  Google Scholar 

  10. S. Shwetanshumala, S. Jana, S. Konar, Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity. J. Electromag. Waves Appl. 20, 2193 (2006)

    MathSciNet  Google Scholar 

  11. S. Konar, S. Jana, M. Mishra, Induced focusing and all optical switching in cubic quintic nonlinear media. Opt. Commun. 255, 114–129 (2005)

    Article  ADS  Google Scholar 

  12. D.N. Christodoulides, M.I. Carvalho, Bright, dark, and gray spatial soliton states in photorefractive media. J. Opt. Soc. Am. B 12, 1628–1633 (1995)

    Article  ADS  Google Scholar 

  13. P. Gunter, J.P. Huignard, Topics in Applied Physics in Photorefractive Materials and Their Application I and II (Springer, Berlin, 1998)

    Google Scholar 

  14. S. Lan, E. Del Re, Z. Chen, M. Shh, M. Segev, Directional coupler with soliton-induced waveguides. Opt. Lett. 24, 475–477 (1999)

    Article  ADS  Google Scholar 

  15. G.C. Valley, M. Segev, B. Crosignani, A. Yariv, M.M. Fejer, M.C. Bashaw, Dark and bright photovoltaic spatial solitons. Phys. Rev. A 50, R4457 (1994)

    Article  ADS  Google Scholar 

  16. N. Asif, S. Shwetanshumala, S. Konar, Photovoltaic spatial soliton pairs in two-photon photorefractive materials. Phys. Lett. A 372(5), 735–740 (2008)

    Article  ADS  MATH  Google Scholar 

  17. G. Zhang, J. Liu, Screening-photovoltaic spatial solitons inbiased two-photon photovoltaic photorefractive crystals. J. Opt. Soc. Am. B 26, 113–120 (2009)

    Article  ADS  Google Scholar 

  18. S. Konar, S. Shekhar, W.P. Hong, Incoherently coupled two component screening photovoltaic solitons in two-photon photorefractive materials under the action of external field. Opt. Laser Tech. 42, 1294–1300 (2010)

    Article  ADS  Google Scholar 

  19. J.S. Liu, K. Lu, Screening-photovoltaic spatial solitons in biased photovoltaic-photorefractive crystals and their self-defection. J. Opt. Soc. Am. B 16, 550–555 (1999)

    Article  Google Scholar 

  20. S. Konar, S. Jana, S. Shwetanshumala, Incoherently coupled screening photovoltaic spatial solitons in a biased photovoltaic photo refractive crystals. Opt. Commun. 273, 324–333 (2007)

    Article  ADS  Google Scholar 

  21. M. Segev, A.J. Agranat, Spatial solitons in centrosymmetric photorefractive media. Opt. Lett. 22, 1299–1301 (1997)

    Article  ADS  Google Scholar 

  22. E. Del Re, B. Crosignani, M. Tamburrini, M. Segev, M. Mitchell, E. Refaeli, A.J. Agranat, One-dimensional steady-state photorefractive spatial solitons in centrosymmetric paraelectric potassium lithium tantalate niobate. Opt. Lett. 23, 421–423 (1998)

    Article  ADS  Google Scholar 

  23. E. Del Re, M. Tamburrini, M. Segev, E. Refaeli, A.J. Agrabat, Two dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate. Appl. Phys. Lett. 73, 16–18 (1998)

    Article  ADS  Google Scholar 

  24. S. Konar, A. Biswas, Properties of optical spatial solitons in photorefractive crystals with Special emphasis to two-photon photorefractive nonlinearity. Opt. Mater. 35, 2581–2603 (2013)

    Article  ADS  Google Scholar 

  25. Z. Chen, M. Segev, D.N. Christodoulides, Optical spatial solitons: historical overview and recent advandances. Rep. Prog. Phys. 75, 086401 (2012)

    Article  ADS  Google Scholar 

  26. S. Shwetanshumala, S. Konar, Bright optical spatial solitons in photorefractive waveguides. Phys. Scr. 82, 045404 (2010)

    Article  ADS  MATH  Google Scholar 

  27. N. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii, Holographic storage in electro optic crystals. I. Steady state. Ferroelectrics 22, 949 (1979)

    Article  Google Scholar 

  28. S.A. Akhmanov, A.P. Sukhorukov, R.V. Khokhlov, Self-focusing and diffraction of light in a nonlinear medium. Phys. Uspekhi 10, 609–636 (1968)

    Article  ADS  Google Scholar 

  29. S. Konar, A. Sengupta, J. Opt. Soc. Am B 11, 1644 (1994)

    Article  ADS  Google Scholar 

  30. D. Anderson, Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. A 27, 3135 (1983)

    Article  ADS  Google Scholar 

  31. S.N. Vlasov, V.A. Petrischev, V.I. Talanov, Radio physics quantum electron. Sov. Radio Phys. 14, 1062 (1971)

    Google Scholar 

  32. G. Keiser, Optical Fiber Communications (The McGraw-Hill Companies, Inc., New York, 2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binay P. Akhouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhouri, B.P., Gupta, P.K. Waveguiding effect on optical spatial solitons in centrosymmetric photorefractive materials. J Opt 46, 281–286 (2017). https://doi.org/10.1007/s12596-016-0372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-016-0372-z

Keywords

Navigation