Skip to main content
Log in

Kinetic regularities of thermal decomposition of polycarbonate films containing Pt, Au, Ag, and Ni nanoparticles

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The kinetic regularities of thermal destruction of polycarbonate films containing Pt, Au, Ag, and Ni nanoparticles were studied. Scanning and transmission electron microscopy, as well as surface plasmon resonance absorption spectra, were used to determine the sizes and shapes of metal nanoparticles in composite films. Nanocomposites were obtained by various methods: by reduction of a precursor in a polycarbonate solution followed by evaporation of the solvent; by deposition on a polymer film surface of nanoparticles formed as a result of diode sputtering of metal in argon plasma or laser ablation in superfluid helium. The rate of thermal decomposition of polycarbonate nanocomposites exceeded the rate of decomposition of the starting polymer. The highest catalytic ability was exhibited by Pt, Au, and Ni nanoparticles in the form of nanowires with diameters of 2–6 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. B. Sergeev, Nanokhimiya [Nanochemistry], Knizhnyi dom “Universitet”, Moscow, 2003, 336 pp. (in Russian).

    Google Scholar 

  2. V. I. Bukhtiyarov, M. G. Slin’ko, Russ. Chem. Rev., 2001, 70, 147; DOI: https://doi.org/10.1070/RC2001v070n02ABEH000637.

    Article  CAS  Google Scholar 

  3. Yu. A. Krutyakov, A. A. Kudrinskiy, A. Yu. Olenin, G. V. Lisichkin, Russ. Chem. Rev., 2008, 77, 233; DOI: https://doi.org/10.1070/RC2008v077n03ABEH003751.

    Article  CAS  Google Scholar 

  4. V. I. Bukhtiyarov, Russ. Chem. Rev., 2007, 76, 553; DOI:https://doi.org/10.1070/RC2007v076n06ABEH003721.

    Article  CAS  Google Scholar 

  5. M. Daniel, D. Astruc, Chem. Rev., 2004, 104, 293; DOI: https://doi.org/10.1021/CR030698+.

    Article  CAS  Google Scholar 

  6. O. G. Ellert, M. V. Tsodikov, S. A. Nikolaev, V. M. Novotortsev, Russ. Chem. Rev., 2014, 83, 718; DOI: https://doi.org/10.1070/RC2014v083n08ABEH004432.

    Article  Google Scholar 

  7. H. Jing, Q. Zhang, N. Large, C. Yu, D. A. Blom, P. Nordlander, H. Wang, Nano Lett., 2014, 14, 3674; DOI: https://doi.org/10.1021/nl5015734.

    Article  CAS  Google Scholar 

  8. Q. Zhang, D. A. Blom, H. Wang, Chem. Mater., 2014, 26, 5131; DOI: https://doi.org/10.1021/cm502508d.

    Article  CAS  Google Scholar 

  9. Q. Zhang, L. Han, H. Jing, D. A. Blom, Y. Lin, H. L. Xin, H. Wang, ACS Nano, 2016, 10, 2960; DOI: https://doi.org/10.1021/acsnano.6b00258.

    Article  CAS  Google Scholar 

  10. J. J. Velázquez-Salazar, L. Bazán-Díaz, Q. Zhang, R. Mendoza-Cruz, L. Montaño-Priede, G. Guisbiers, N. Large, S. Link, ACS Nano, 2019, 13, 10113; DOI: https://doi.org/10.1021/acsnano.9b03084.

    Article  Google Scholar 

  11. J. K. Lee, D. Samanta, H. G. Nam, R. N. Zare, Nat. Commun., 2018, 9, 1562; DOI: https://doi.org/10.1038/s41467-018-04023-z.

    Article  CAS  Google Scholar 

  12. N. N. Volkova, L. M. Bogdanova, L. I. Kuzub, N. N. Dremova, Polym. Sci., Ser. B (Engl. Transl.), 2015, 57, 31; DOI: https://doi.org/10.1134/S1560090415010145.

    Article  CAS  Google Scholar 

  13. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, I. I. Khodos, J. Exp. Theor. Phys. (Engl. Transl.), 2011, 112, 1061; DOI: https://doi.org/10.1134/S1063776111040182.

    Article  CAS  Google Scholar 

  14. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, I. I. Khodos, J. Phys. Chem. A, 2015, 119, 2490; DOI: https://doi.org/10.1021/jp5087834.

    Article  CAS  Google Scholar 

  15. B. M. Kovarskaya, A. B. Blyumenfel’d, I. I. Levantovskaya, in Termicheskaya stabil ‘host’geterotsepnykh polimerov [Thermal Stability of Heterochain Polymers], Khimiya, Moscow, 1977, p. 106 (in Russian).

    Google Scholar 

  16. B. J. Wiley, S. H. Im, Z.-Y. Li, J. McLellan, A. Siekkinen, Y. Xia, J. Phys. Chem. B, 2006, 110, 15666; DOI: https://doi.org/10.1021/jp0608628.

    Article  CAS  Google Scholar 

  17. P. Pavaskar, I.-K. Hsu, J. Theiss, W. H. Hung, S. B. Cronin, J. Appl. Phys., 2013, 113, 034302; DOI: https://doi.org/10.1063/1.4775784.

    Article  Google Scholar 

  18. Y. Chang, N. Zhang, Y. Xing, J. Phys. Chem. Lett., 2019, 10, 4505; DOI: https://doi.org/10.1021/acs.jpclett.9b01589.

    Article  CAS  Google Scholar 

  19. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, T. N. Rostovshchikova, S. A. Nikolaev, E. S. Lokteva, E. V. Golubina, Gold Bull., 2015, 48, 119; DOI: https://doi.org/10.1007/s13404-015-0168-y.

    Article  CAS  Google Scholar 

  20. E. B. Gordon, A. V. Karabulin, V. I. Matyushenko, V. D. Sizov, T. N. Rostovshchikova, S. A. Nikolaev, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, I. N. Krotova, S. A. Gurevich, V. M. Kozhevin, D. A. Iavsin, High Energy Chem. (Engl. Transl.), 2016, 50, 292–297; DOI: https://doi.org/10.1134/S0018143916040068.

    Article  CAS  Google Scholar 

  21. A. Gatin, M. V. Grishin, N. V. Dokhlikova, S. Yu. Sarvadii, B. R. Shub, Crystals, 2019, 9, 350; DOI: https://doi.org/10.3390/cryst9070350.

    Article  CAS  Google Scholar 

  22. E. Roduner, Chem. Soc. Rev., 2006, 35, 583; DOI: https://doi.org/10.1039/B502142C.

    Article  CAS  Google Scholar 

  23. T. N. Rostovshchikova, M. I. Shilina, E. V. Golubina, E. S. Lokteva, I. N. Krotova, S. A. Nikolaev, K. I. Maslakov, D. A. Yavsin, Russ. Chem. Bull., 2015, 64, 812; DOI: https://doi.org/10.1007/s11172-015-0938-y.

    Article  CAS  Google Scholar 

  24. L. I. Trakhtenberg, G. N. Gerasimov, Metal Containing Polymers: Cryochemical Synthesis, Structure, and Physico-chemical Properties, in Metal/Polymer Nanocomposites, Eds G. Carotenuto, L. Nicolais, John Wiley & Sons Inc., New York, 2005, p. 37; Online ISBN:9780471695431, DOI:https://doi.org/10.1002/0471695432.ch2.

    Google Scholar 

  25. L. I. Trakhtenberg, G. N. Gerasimov, L. N. Aleksandrova, V. K. Potapov, Radiation Phys. Chem., 2002, 65, 479; DOI:https://doi.org/10.1016/S0969-806X(02)00358-4.

    Article  CAS  Google Scholar 

  26. S. B. Erenburg, S. V. Trubina, E. A. Kovalenko, O. A. Geras’ko, V. I. Zaikovskii, K. Kvashnina, S. G. Nikitenko, JETP Lett. (Engl. Transl.), 2013, 97, 285; DOI: https://doi.org/10.1134/S0021364013050032.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Volkova.

Additional information

Published in Russian in Izvestiya AkademiiNauk. Seriya Khimicheskaya, No. 9, pp. 1690–1698, September, 2021.

The work was carried out as part of the Russian state assignment (state registration No. AAAA-A19-119101690058-9, No. AAAA-A19-119100800130-0, No. AAAA-A18-118112290069-6, No. AAAA-A19-119070790003-7, and No. AAAA-A19-119032690060-9).

The authors are grateful to the Center for Collective Use of the Scientific Center of the Russian Academy of Sciences in Chernogolovka for studies using the JEM-2100 electron microscope.

This paper does not contain descriptions of studies on animals or humans.

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, N.N., Bogdanova, L.M., Volkov, V.T. et al. Kinetic regularities of thermal decomposition of polycarbonate films containing Pt, Au, Ag, and Ni nanoparticles. Russ Chem Bull 70, 1690–1698 (2021). https://doi.org/10.1007/s11172-021-3271-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3271-7

Key words

Navigation