Skip to main content
Log in

Nuclear spin catalysis in biochemical physics

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Magnetic isotope effects have been recently discovered in living nature. They were observed for the first time in experiments on cells enriched with various magnesium isotopes, magnetic 25Mg or non-magnetic ones. A catalytic effect of the magnetic isotope of magnesium was discovered in experiments with myosin, the most important biomolecular motor utilizing the energy of ATP to perform mechanical work. The rate of ATP hydrolysis with the magnetic 25Mg isotope is 2.0–2.5 times higher than that obtained with nonmagnetic 24Mg or 26Mg. A similar effect of the nuclear spin catalysis was experimentally observed for zinc isotopes. The rate of ATP hydrolysis in the case of magnetic 67Zn increased by 40–50% as compared to that observed experimentally for nonmagnetic isotopes (64Zn or 68Zn). Catalytic effects of the magnetic isotope of magnesium were also experimentally found for H+-ATPase isolated from yeast mitochondria and ATPase of the plasma membrane of the myometrium. The magnetic isotope effect indicates unambiguously that the chemomechanical processes involve a limiting step catalyzed by biomolecular motors, which depends on the electronic spin state, and that this step is accelerated in the presence of nuclear spin of the magnetic isotope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Commoner, J. Townsend, G. E. Pake, Nature, 1954, 174, 689.

    Article  CAS  Google Scholar 

  2. D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, Freeman, New York, 2008, 520 pp.

    Google Scholar 

  3. V. K. Koltover, Russ. Chem. Bull., 2010, 59, 37; DOI: https://doi.org/10.1007/s11172-010-0042-2.

    Article  CAS  Google Scholar 

  4. Encyclopedia of Nuclear Magnetic Resonance, Eds D. M. Grant, R. K. Harris, Wiley, Chichester, 1996.

    Google Scholar 

  5. A. L. Buchachenko, R. Z. Sagdeyev, K. M. Salikhov, Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh [Magnetic and Spin Effects in Chemical Reactions], Nauka, Novosibirsk, 1978, p. 337 (in Russian).

    Google Scholar 

  6. N. J. Turro, B. Kraeutler, Acc. Chem. Res., 1980, 13, 369.

    Article  CAS  Google Scholar 

  7. Y. B. Zeldovich, A. L. Buchachenko, E. L. Frankevich, Sov. Phys. Uspekhi, 1988, 155, 3.

    CAS  Google Scholar 

  8. B. Brocklenhurst, Chem. Soc. Rev., 2002, 31, 301.

    Article  Google Scholar 

  9. A. L. Buchachenko, R. G. Lawler, Acc. Chem. Res., 2017, 50, 877.

    Article  CAS  Google Scholar 

  10. A. L. Buchachenko, Phys. Usp., 2019, 189, 47.

    Article  Google Scholar 

  11. V. V. Kveder, Yu. A. Osipiyan, A. I. Shalynin, Sov. Phys. JETP, 1982, 56, 389.

    Google Scholar 

  12. A. L. Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry, Nova Science Publ., New York, 2009.

    Google Scholar 

  13. A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, Chem. Rev., 2012, 112, 2042.

    Article  CAS  Google Scholar 

  14. T. N. Bogatyrenko, Ye. A. Kudryashova, L. V. Tumanova, V. K. Koltover, Tez. dokl. V Mezhdunar. kongressa “Slabye i sverkhslabye polya i izluchenia v biologii i meditsine” [Proc. V Int. Congress “Weak and superweakfields and radiation in biology and medicine”], St. Petersburg, 2009, p. 92 (in Russian).

  15. D. M. Grodzinsky, T. A. Evstyukhina, V. K. Koltover, V. G. Korolev, Y. A. Kutlakhmedov, Reports Natl. Acad. Sci. Ukraine, 2011, 12, 153.

    Google Scholar 

  16. V. K. Koltover, U. G. Shevchenko, L. V. Avdeeva, E. A. Royba, V. L. Berdinsky, E. A. Kudryashova, Dokl. Biochem. Biophys., 2012, 442, 12.

    Article  CAS  Google Scholar 

  17. V. K. Koltover, V. G. Korolev, Y. A. Kutlakhmedov, in Ionizing Radiation: Applications, Sources and Biological Effects, Eds E. Belotserkovsky, Z. Ostaltsov, Nova Science Publ., New York, 2013, p. 117.

  18. V. K. Koltover, Russ. Chem. Bull., 2014, 63, 1029.

    Article  CAS  Google Scholar 

  19. L. V. Avdeeva, V. K. Koltover, Moscow Univ. Chem. Bull., 2016, 71, 160.

    Article  Google Scholar 

  20. L. V. Avdeeva, T. A. Evstyukhina, V. K. Koltover, V. G. Korolev, Yu. A. Kutlakhmedov, Nucl. Phys. At. Energy, 2019, 20, 271.

    Article  Google Scholar 

  21. V. K. Koltover, R. D. Labyntseva, V. K. Karandashev, S. O. Kosterin, Biophysics (Engl. Transl.), 2016, 61, 200.

    Article  CAS  Google Scholar 

  22. V. K. Koltover, R. D. Labyntseva, S. O. Kosterin, in: Myosin: Biosynthesis, Classes and Function, Ed. D. Broadbent, Nova Science Publ., New York, 2018, p. 135.

  23. V. K. Koltover, R. D. Labyntseva, V. K. Karandashev, Biophysics (Engl. Transl.), 2020, 65, 416.

    Article  CAS  Google Scholar 

  24. R. A. Guskova, M. M. Vilenchik, V. K. Koltover, Biophysics (Engl. Transl.), 1980, 25, 102.

    CAS  Google Scholar 

  25. V. K. Koltover, P. Graber, V. K. Karandashev, I. Starke, P. Turina, in: Abstracts of 11th Int. Conf. “Biocatalysis: Fundamentalsand Applications”, Innovations and High Technologies MSU Ltd, Moscow, 2017, p. 50.

    Google Scholar 

  26. D. V. Smirnova, V. K. Koltover, S. V. Nosenko, I. A. Strizhova, N. N. Ugarova, Moscow Univ. Chem. Bull., 2018, 73, 158.

    Article  Google Scholar 

  27. D. Crotty, G. Silkstone, S. Poddar, R. Ranson, A. Prina-Mello, M. T. Wilson, J. M. D. Coey, Proc. Natl. Acad. Sci. USA, 2019, 109, 1437.

    Article  Google Scholar 

  28. M. V. Volkenstein, General Biophysics, Acad. Press, New York, 1983.

    Google Scholar 

  29. D. S. Chernavskiy, N. M. Chernavskaya, “Belok-mashina”. Biologicheskie makromolekulyarnye konstruktsii [“Protein as a machine”. Biological macromolecular constructs], Yanus-K, Moscow, 1999 (in Russian).

    Google Scholar 

  30. F. A. Kiani, S. Fischer, Proc. Natl. Acad. Sci. USA, 2014, 111, 2947.

    Article  Google Scholar 

  31. L. A. Blumenfeld, V. K. Koltover, Mol. Biol. (Engl. Transl.), 1972, 6, 130.

    Google Scholar 

  32. V. K. Koltover, J. Mol. Liquids, 2017, 235, 44.

    Article  CAS  Google Scholar 

  33. A. S. Davydov, Sov. Phys. Uspekhi, 1982, 25, 898.

    Article  Google Scholar 

  34. V. I. Tikhonov, A. A. Volkov, Science, 2001, 296, 2363.

    Article  Google Scholar 

  35. Y. Scolnik, I. Portnaya, U. Cogan, S. Tal, R. Haimovitz, M. Fridkin, A. C. Elitzur, D. W. Deamer, M. Shinitzky, Phys. Chem. Chem. Phys., 2006, 8, 333.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Koltover.

Additional information

Based on the materials presented on the XXXII Symposium “Modern Chemical Physics” (September 19–28, 2020, Tuapse, Russia).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1633–1639, September, 2021.

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (Theme No. AAAA-A19-119092390041-5).

The experiments in the cited works were carried out in full compliance with the European Convention for the Protection of Animals used for Scientific Experiments and Other Scientific Purposes (Strasbourg, March 18, 1986).

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltover, V.K. Nuclear spin catalysis in biochemical physics. Russ Chem Bull 70, 1633–1639 (2021). https://doi.org/10.1007/s11172-021-3264-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-021-3264-6

Key words

Navigation