Skip to main content
Log in

Stable magnetic isotopes: from spin chemistry to biomedicine

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Biomolecular nanoreactors, like other cell structures, are composed of atoms of chemical elements many of which have magnetic and non-magnetic stable isotopes. The so-called magnetic isotope effect well known in spin chemistry is a direct consequence of the law of conservation of the electron angular moment (spin) and manifests itself in the fact that chemical reactions with participation of free radical pairs or ion-radical pairs exhibit different reaction rates and different yields of products according to whether the reactants contain magnetic or nonmagnetic isotopes. The magnetic isotope effects in the enzymatic catalysis were first discovered in the pioneering works of Russian scientists, A. L. Buchachenko and his co-workers. Our team studied living cells enriched in different isotopes of magnesium and discovered for the first time the magnetic isotope effects (nuclear spin catalysis) in vivo. The magnetic isotope 25Mg was much more efficient than the non-magnetic isotope 24Mg in stimulating the recovery processes of the S. cerevisiae yeast cells after short-wavelength UV irradiation. The E. coli bacterial cells are adapted substantially faster to a new growth medium containing magnetic 25Mg than to a medium containing non-magnetic 24Mg or 26Mg. Furthermore, the effects of magnesium isotopes on the muscle protein myosin were investigated in cooperation with Ukrainian biochemists and stimulation of the ATPase activity of the enzyme by the magnetic 25Mg isotope 2–2.5 times exceeding the enzyme activity in the presence of non-magnetic magnesium isotopes was detected. Detailed physicochemical mechanisms of the magnetic isotope effects in the enzymatic catalysis and elucidation of the biological mechanisms of enhancement of these effects in living cells are the objectives of further research. Nevertheless, the experimental results obtained to date provide grounds for believing that pharmaceutical agents enriched in 25Mg and possibly in the magnetic isotopes of some other chemical elements will find use in biomedicine, for example, in cardiology for prevention and treatment of acute hypoxia, in oncology as cytostatics, and for the development of new antistress agents and radiation protectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Lohmann, Nature, 2010, 464, 1140.

    Article  CAS  Google Scholar 

  2. J. L. Gould, Current Biol., 2010, 20, R431.

    Article  CAS  Google Scholar 

  3. Encyclopedia of Nuclear Magnetic Resonance, Eds D. M. Grant, R. K. Harris, Wiley, Chichester, 1996, 728 pp.

    Google Scholar 

  4. A. L. Buchachenko, R. Z. Sagdeev, K. M. Salikhov, Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh [Magnetic and Spin Effects in Chemical Reactions], Nauka, Novosibirsk, 1978, 337 pp. (in Russian).

    Google Scholar 

  5. Ya. B. Zel’dovich, A. L. Buchachenko, E. L. Frankevich, Sov. Phys. Usp., 1988, 31, 385 [Usp. Fiz. Nauk, 1988, 155, 3].

    Article  Google Scholar 

  6. B. Brocklenhurst, Chem. Soc. Rev., 2002, 31, 301.

    Article  Google Scholar 

  7. A. L. Buchachenko, Magnetic Isotope Effect in Chemistry and Biochemistry, Nova Science Publishing, New York, 2009.

    Google Scholar 

  8. A. L. Buchachenko, D. A. Kouznetsov, S. B. Arkhangel’sky, M. A. Orlova, A. A. Markaryan, A. G. Berdieva, P. Z. Khasigov, Dokl. Biochem. Biophys., 2005, 396, 197 [Dokl. Akad. Nauk, 2004, 396, 828].

    Article  Google Scholar 

  9. A. L. Buchachenko, D. A. Kouznetsov, A. V. Shishkov, J. Phys. Chem. A, 2004, 108, 707.

    Article  CAS  Google Scholar 

  10. A. L. Buchachenko, D. A. Kouznetsov, S. E. Arkhangelsky, M. A. Orlova, A. A. Markaryan, Proc. Natl. Acad. Sci. USA, 2005, 102, 10793.

    Article  CAS  Google Scholar 

  11. A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, M. A. Orlova, J. Phys. Chem. B, 2008, 112, 2548.

    Article  CAS  Google Scholar 

  12. A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, L. N. Shchegoleva, S. E. Arkhangelsky, Chem. Phys. Lett., 2011, 505, 130.

    Article  CAS  Google Scholar 

  13. A. L. Buchachenko, D. A. Kouznetsov, N. N. Breslavskaya, Chem. Rev., 2012, 112, 2042.

    Article  CAS  Google Scholar 

  14. A. L. Buchachenko, J. Phys. Chem. B, 2013, 117, 2231.

    Article  CAS  Google Scholar 

  15. A. L. Buchachenko, A. P. Orlov, D. A. Kouznetsov, N. N. Breslavskaya, Nucleic Acids Res., 2013, 41, 8300.

    Article  CAS  Google Scholar 

  16. D. Crotty, G. Silkstone, S. Poddar, R. Ranson, A. Prina-Mello, M. T. Wilson, J. M. D. Coey, Proc. Natl. Acad. Sci. USA, 2012, 109, 1437.

    Article  CAS  Google Scholar 

  17. D. L. Nelson, M. M. Cox, Lehninger Principles of Biochemistry, Freeman, 5th ed., New York, 2008, 1100 pp.

    Google Scholar 

  18. T. N. Bogatyrenko, E. A. Kudryashova, L. V. Tumanova, V. K. Koltover, V Mezhdunar. kongress “Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine” [V Int. Congress on Low and Superlow Fields and Radiations in Biology and Medicine] (Saint Petersburg, June 29–July 3, 2009), Abstrs, St. Petersburg, 2009, p. 92.

    Google Scholar 

  19. V. K. Koltover, in Nanotechnology 2010, Nano Science and Technology Institute, Danville (CA), 2010, Vol. 3, p. 475.

    Google Scholar 

  20. V. Koltover, Y. Kutlakhmedov, D. Grodzinsky, Mol. Biol. Cell, Am. Chem. Soc. Annu. Meeting Abstrs, 2011, Abstr. 778; http://www.molbiolcell.org/content/suppl/2011/12/14/22.24.4705.DC1/Regular-Abstracts.pdf.

    Google Scholar 

  21. D. M. Grodzinsky, T. A. Evstyukhina, V. K. Koltover, V. G. Korolev, Y. A. Kutlakhmedov, Rep. Natl. Acad. Sci. Ukraine, 2011, No. 12, 153.

    Google Scholar 

  22. V. K. Koltover, V. G. Korolev, Y. A. Kutlakhmedov, in Ionizing Radiation: Applications, Sources and Biological Effects, Nova Sci. Publ., New York, 2012, p. 117–128.

    Google Scholar 

  23. V. K. Koltover, U. G. Shevchenko, L. V. Avdeeva, E. A. Roiba, V. L. Berdinskii, E. A. Kudryashova, Dokl. Biochem. Biophys., 2012, 442, 12 [Dokl. Akad. Nauk, 2012, 442, 272].

    Article  CAS  Google Scholar 

  24. V. K. Koltover, Biophysics, 2013, 58, 187 [Biofizika, 2013, 58, 257].

    Article  CAS  Google Scholar 

  25. A. M. P. Romani, Arch. Biochem. Biophys., 2011, 512, 1.

    Article  CAS  Google Scholar 

  26. L. A. Blyumenfel’d, V. K. Koltover, Mol. Biol. (Moscow), 1972, 6, 130 [Mol. Biologiya, 1972, 6, 161].

    Google Scholar 

  27. S. A. Kosterin, Transport kal’tsiya v gladkikh myshtsakh [Calcium Transport in Smooth Muscles], Naukova dumka, Kiev, 1990, 216 pp. (in Russian).

    Google Scholar 

  28. M. Vicente-Manzanares, X. Ma, R. S. Adelstein, A. R. Horwitz, Nat. Rev. Mol. Cell Biol., 2009, 10, 778.

    Article  CAS  Google Scholar 

  29. V. K. Koltover, R. D. Labyntseva, A. A. Lul’ko, V. K. Karandashev, S. A. Kosterin, Rep. Natl. Acad. Sci. Ukraine, 2014, No. 1, 163.

    Google Scholar 

  30. M. V. Vol’kenshtein, Obshchaya biofizika [General Biophysics], Nauka, Moscow, 1978, 592 pp. (in Russian).

    Google Scholar 

  31. N. Amirshahi, R. Alyautdin, S. Sarkar, S. Rezayat, M. Orlova, I. Trushkov, A. Buchachenko, D. Kuznetsov, Arch. Med. Res., 2008, 39, 549.

    Article  CAS  Google Scholar 

  32. S. Rezayat, S. Boushehri, B. Salmanian, A. Omidvari, S. Tarighat, S. Esmaeli, S. Sarkar, N. Amirshahi, R. Alyautdin, M. Orlova, I. Trushkov, A. Buchachenko, D. Kuznetsov, Eur. J. Med. Chem., 2009, 44, 1554.

    Article  CAS  Google Scholar 

  33. M. A. Orlova, A. P. Orlov, Br. J. Med. Med. Res., 2011, 1, 239.

    Article  Google Scholar 

  34. A. A. Bukhvostov, O. A. Shatalov, A. P. Orlov, D. A. Kuznetsov, Onkogematologiya [Oncohematology], 2013, No. 1, 28 (in Russian).

    Google Scholar 

  35. N. Amirshahi, R. N. Alyautdin, S. Sarkar, S. M. Rezayat, M. A. Orlova, I. P. Trushkov, A. L. Buchachenko, D. A. Kuznetsov, Nanotechnologies in Russia, 2008, 3, 611 [Ros. Nanotekhnologii, 2008, 3, No. 9–10, 125].

    Article  Google Scholar 

  36. M. A. Orlova, T. P. Trofimova, A. P. Orlov, O. A. Shatalov, Br. J. Med. Med. Res., 2013, 3, 1731.

    Article  Google Scholar 

  37. V. K. Koltover Russ. Chem. Bull. (Int. Ed.), 2010, 59, 37 [Izv. Akad. Nauk. Ser. Khim., 2010, 37].

    Article  CAS  Google Scholar 

  38. J. F. Cryan, T. G. Dinan, Nat. Rev. Neurosci., 2012, 13, 701.

    Article  CAS  Google Scholar 

  39. C. Heintz, W. Mair, Cell, 2014, 156, 408.

    Article  CAS  Google Scholar 

  40. E. Metchnikoff, The Prolongation of Life. Optimistic Studies, Heinemann, London, 1907.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Koltover.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1029–1035, May, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koltover, V.K. Stable magnetic isotopes: from spin chemistry to biomedicine. Russ Chem Bull 63, 1029–1035 (2014). https://doi.org/10.1007/s11172-014-0545-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0545-3

Key words

Navigation