Skip to main content
Log in

Crystalline hydrates of calix[4]arene-para-sulfonic acid with n (n = 6–16) water molecules: a structure modeling

  • Full Articles
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The structures of crystalline hydrates of calix[4]arene-para-sulfonic acid with n (n = 6–16) water molecules and the activation barriers to surface proton migration were calculated within the framework of the density functional theory (DFT) using the PBE gradient-corrected functional, the "hard" basis set of projector-augmented waves (PAW), a corresponding pseudopotential, periodic boundary conditions, and the VASP program package. The energies of formation of crystalline hydrates from calix[4]arene-para-sulfonic acid and n water molecules calculated per water molecule are in the range of 0.4–0.9 eV and depend on n. The adsorption energy of water on the surface is in the range of 0.5–0.7 eV. The activation barriers to proton transfer across the surface calculated for the most stable crystal (n = 8) are close to experimental data and depend on the number of superstoihiometric water molecules, being equal to ~0.2 eV provided three superstoihiometric water molecules per surface SO3H group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Proton Conductors: Solids, Membranes and Gels–Materials and Devices, Ed. Ph. Colomban, Camb. Univ. Press, Cambridge, 1992.

  2. K. D. Kreuer, Chem. Mater., 1996, 8, 610–641.

    Article  CAS  Google Scholar 

  3. Yu. A. Dobrovolsky, E. V. Volkov, A. V. Pisareva, Yu. A. Fedotov, D. Yu. Likhachev, Russ. J. Gen. Chem. (Engl. Transl.), 2007, 77, 766–777 [Zh. Obshch. Khim., 2007, 50, 95–104].

    Article  Google Scholar 

  4. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, X. C. Adroher, Appl. Energy, 2011, 88, 981–1007.

    Article  CAS  Google Scholar 

  5. A. B. Yaroslavtsev, Yu. A. Dobrovolsky, N. S. Shaglaeva, L. A. Frolova, E. V. Gerasimova, E. A. Sanginov, Russ. Chem. Rev., 2012, 81, 191–220.

    Article  CAS  Google Scholar 

  6. H. Zhang, P. K. Shen, Chem. Rev., 2012, 112, 2780–2832.

    Article  CAS  Google Scholar 

  7. S. S. Ivanchev, S. V. Myakin, Russ. Chem. Rev., 2010, 79, 101–117.

    Article  CAS  Google Scholar 

  8. V. V. Rodionov, A. M. Mikhailova, N. G. Bukun, Russ. J. Electrochem. (Engl. Transl.), 1996, 32, 464–467 [Elektrokhimiya, 1996, 32, 503–507].

    CAS  Google Scholar 

  9. N. Bukun, V. Rodionov, A. Mikhailova, Yu. Dobrovolsky, Solid State Ionics, 1997, 97, 257–260.

    Article  CAS  Google Scholar 

  10. A. V. Pisareva, G. V. Shilov, A. I. Karelin, Yu. A. Dobrovolsky, Russ. J. Phys. Chem. A (Engl. Transl.), 2008, 82, 355–363 [Zh. Fiz. Khim., 2008, 82, 433–442].

    CAS  Google Scholar 

  11. A. V. Pisareva, G. V. Shilov, A. I. Karelin, R. V. Pisarev, Yu. A. Dobrovolsky, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 364–373 [Izv. Akad. Nauk, Ser. Khim., 2008, 356–365].

    Article  CAS  Google Scholar 

  12. A. V. Pisareva, G. V. Shilov, A. I. Karelin, Yu. A. Dobrovolsky, R. V. Pisarev, Russ. J. Phys. Chem. A (Engl. Transl.), 2010, 84, 444–459 [Zh. Fiz. Khim., 2010, 84, 514–530].

    Article  CAS  Google Scholar 

  13. O. S. Filipenko, I. I. Chuev, L. S. Leonova, G. V. Shilov, S. M. Aldoshin, Dokl. Phys. Chem. (Engl. Transl.), 2001, 376, 27–30 [Dokl. Akad. Nauk, 2001, 376, 501–505].

    Article  Google Scholar 

  14. D. R. Stewart, C. D. Gutsche, J. Am. Chem. Soc., 1999, 121, 4136–4146.

    Article  CAS  Google Scholar 

  15. S. Shinkai, K. Araki, T. Tsubaki, T. Arimura, O. Manabe, J. Chem. Soc., Perkin Trans. 1, 1987, 2297–2299.

    Google Scholar 

  16. S. Shinkai, K. Araki, T. Matsuda, N. Nishiyama, H. Ikeda, I. Takasu, M. Iwamoto, J. Am. Chem. Soc., 1990, 112, 9053–9058.

    Article  CAS  Google Scholar 

  17. S. Shinkai, T. Arimura, K. Araki, H. Kawabata, H. Satoh, T. Tsubaki, O. Manabe, J. Sunamoto, J. Chem. Soc., Perkin Trans. 1, 1989, 2039–2045.

    Google Scholar 

  18. S. Shinkai, K. Araki, T. Matsuda, O. Manabe, Bull. Chem. Soc. Jpn, 1989, 62, 3856–3862.

    Article  CAS  Google Scholar 

  19. S. Shinkai, S. Mori, T. Tsubaki, T. Sone, O. Manabe, Tetrahedron Lett., 1984, 25, 5315–5318.

    Article  CAS  Google Scholar 

  20. A. V. Pisareva, R. V. Pisarev, A. I. Karelin, L. V. Shmygleva, I. S. Antipin, A. I. Konovalov, S. E. Solovieva, Yu. A. Do-brovolsky, S. M. Aldoshin, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1892–1899 [Izv. Akad. Nauk, Ser. Khim., 2012, 1877–1884].

    Article  CAS  Google Scholar 

  21. L. V. Shmygleva, A. V. Pisareva, R. V. Pisarev, A. E. Ukshe, Yu. A. Dobrovolsky, Russ. J. Electrochem. (Engl. Transl.), 2013, 49, 801–806 [Elektrokhimiya, 2013, 49, 893–898].

    Article  CAS  Google Scholar 

  22. A. E. Ukshe, L. V. Shmygleva, A. V. Pisareva, N. G. Bukun, Yu. A. Dobrovolsky, Russ. J. Electrochem. (Engl. Transl.), 2013, 49, 807–812 [Elektrokhimiya, 2013, 49, 899–904].

    Article  CAS  Google Scholar 

  23. O. Nakamura, T. Kodama, I. Ogino, Y. Miyake, Chem. Lett., 1979, 8, 17–18.

    Article  Google Scholar 

  24. O. Nakamura, I. Ogino, T. Kodama, Solid State Ionics, 1981, 3–4, 347–351.

    Article  Google Scholar 

  25. A. Hardwick, P. G. Dickens, R. C. T. Slade, Solid State Ionics, 1984, 13, 345–350.

    Article  CAS  Google Scholar 

  26. A. I. Korosteleva, L. S. Leonova, E. A. Ukshe, Sov. Electrochem. (Engl. Transl.), 1987, 23, 1266–1270 [Elektrokhimiya, 1987, 23, 1266–1270].

    Google Scholar 

  27. K. D. Kreuer, M. Hampele, K. Dolde, A. Rabenau, Solid State Ionics, 1988, 28–30, 589–593.

    Article  Google Scholar 

  28. L. A. Fisun, V. N. Pak, J. Appl. Chem. USSR (Engl. Transl.), 1992, 65, 213–216 [Zh. Prikl. Khim., 1992, 65, 213–216].

    Google Scholar 

  29. A. I. Chikin, A. V. Chernyak, Z. Jin, Yu. S. Naumova, A. E. Ukshe, N. V. Smirnova, V. I. Volkov, Yu. A. Dobrovolsky, J. Solid State Electrochem., 2012, 16, 2767–2775.

    Article  CAS  Google Scholar 

  30. P. C. Rieke, N. E. Vanderborgh, J. Membr. Sci., 1987, 32, 313–328.

    Article  CAS  Google Scholar 

  31. T. A. Zawodzinski, Jr., T. E. Springer, F. Uribe, S. Gottesfeld, Solid State Ionics, 1993, 60, 199–201.

    Article  CAS  Google Scholar 

  32. T. A. Zawodzinski, Jr., C. Derouin, S. Radzinski, R. J. Sherman, V. T. Smith, T. E. Springer, S. Gottesfeld, J. Electrochem. Soc., 1993, 140, 1041–1047.

    Article  CAS  Google Scholar 

  33. T. A. Zawodzinski, Jr., T. E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, S. Gottesfeld, J. Electrochem. Soc., 1993, 140, 1981–1985.

    Article  CAS  Google Scholar 

  34. Y. Sone, P. Ekdunge, D. Simonsson, J. Electrochem. Soc., 1996, 143, 1254–1259.

    Article  CAS  Google Scholar 

  35. A. V. Anantaraman, C. L. Gardner, J. Electroanal. Chem., 1996, 414, 115–120.

    Google Scholar 

  36. S. Slade, S. A. Campbell, T. R. Ralph, F. C. Walsh, J. Electrochem. Soc., 2002, 149, A1556–A1564.

    Article  CAS  Google Scholar 

  37. H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. Yan, J. Mater. Chem., 2002, 12, 834–837.

    Article  CAS  Google Scholar 

  38. E. L. Thompson, T. W. Capehart, T. J. Fuller, J. Jorne, J. Electrochem. Soc., 2006, 153, A2351–A2362.

    Article  CAS  Google Scholar 

  39. L. Maldonado, J.-Ch. Perrin, J. Dillet, O. Lottin, J. Membr. Sci., 2012, 389, 43–56.

    Article  CAS  Google Scholar 

  40. J. L. Atwood, D. L. Clark, R. K. Juneja, G. W. Orr, K. D. Robinson, R. L. Vincent, J. Am. Chem. Soc., 1992, 114, 7558–7559.

    Article  CAS  Google Scholar 

  41. T. E. Clark, M. Makha, A. N. Sobolev, H. Rohrs, J. L. Atwood, C. L. Raston, Chem. Eur. J., 2008, 14, 3931–3938.

    Article  CAS  Google Scholar 

  42. A. Ikeda, S. Shinkai, Chem. Rev., 1997, 97, 1713–1734.

    Article  CAS  Google Scholar 

  43. J. L. Atwood, G. W. Orr, N. C. Means, F. Hamada, H. Zhang, S. G. Bott, K. D. Robinson, Inorg. Chem., 1992, 31, 603–606.

    Article  CAS  Google Scholar 

  44. J. L. Atwood, L. J. Barbour, S. Dalgarno, C. L. Raston, H. R. Webb, J. Chem. Soc., Dalton Trans., 2002, 4351–4356.

    Google Scholar 

  45. M. Makha, A. N. Sobolev, Cryst. Growth Des., 2007, 7, 1441–1445.

    Article  CAS  Google Scholar 

  46. S. J. Dalgarno, M. J. Hardie, C. L. Raston, Cryst. Growth Des., 2004, 4, 227–234.

    Article  CAS  Google Scholar 

  47. F. Gandara, E. Gutierrez-Puebla, M. Iglesias, N. Snejko, M. A. Monge, Cryst. Growth Des., 2010, 10, 128–134.

    Article  CAS  Google Scholar 

  48. R.-G. Lin, L.-S. Long, R.-B. Huang, L.-S. Zheng, Inorg. Chem. Commun., 2007, 10, 1257–1261.

    Article  CAS  Google Scholar 

  49. Y. Israeli, G. P. A. Yap, C. Detellier, Supramol. Chem., 2001, 12, 457–464.

    Article  CAS  Google Scholar 

  50. Y.-M. Legrand, A. van der Lee, M. Barboiu, Science, 2010, 329, 299–302.

    Article  CAS  Google Scholar 

  51. K. Fucke, K. M. Anderson, M. H. Filby, M. Henry, J. Wright, S. A. Mason, M. J. Gutmann, L. J. Barbour, C. Oliver, A. W. Coleman, J. L. Atwood, J. A. K. Howard, J. W. Steed, Chem. Eur. J., 2011, 17, 10259–10271].

    Article  CAS  Google Scholar 

  52. S. J. Dalgarno, C. L. Raston, Dalton Trans., 2003, 287–290.

    Google Scholar 

  53. S. J. Dalgarno, J. L. Atwood, C. L. Raston, Cryst. Growth Des., 2007, 7, 1762–1770.

    Article  CAS  Google Scholar 

  54. J. L. Atwood, A. W. Coleman, H. Zhang, S. G. Bott, J. Inclusion Phenom. Mol. Recogn. Chem., 1989, 7, 203–211.

    Article  CAS  Google Scholar 

  55. Z. Asfari, J. Harrowfield, P. Thuery, J. Vicens, Supramol. Chem., 2003, 15, 69–77.

    Article  CAS  Google Scholar 

  56. A. W. Coleman, S. G. Bott, S. D. Morley, C. M. Means, K. D. Robinson, H. Zhang, J. L. Atwood, Angew. Chem., Int. Ed., 1988, 27, 1361–1362.

    Article  Google Scholar 

  57. T. S. Zyubina, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 1581–1588 [Izv. Akad. Nauk, Ser. Khim., 2009, 1534–1541].

    Article  CAS  Google Scholar 

  58. T. S. Zyubina, A. V. Pisareva, Yu. A. Dobrovolsky, A. S. Zyubin, G. A. Pokatovich, I. S. Irgibaeva, S. K. Lin, A. M. Mebel´, Russ. J. Electrochem. (Engl. Transl.), 2007, 43, 502–512 [Elektrokhimiya, 2007, 43, 528–539].

    Article  CAS  Google Scholar 

  59. T. S. Zyubina, Russ. J. Inorg. Chem. (Engl. Transl.), 2008, 53, 1438–1445 [Zh. Neorgan. Khim., 2008, 53, 1537–1544].

    Article  Google Scholar 

  60. T. S. Zyubina, L. V. Shmygleva, R. V. Pisarev, A. S. Zyubin, A. V. Pisareva, Yu. A. Dobrovolsky, Russ. Chem. Bull. (Int. Ed.), 2012, 61, 1521–1530 [Izv. Akad. Nauk, Ser. Khim, 2012, 1505–1513].

    Article  CAS  Google Scholar 

  61. T. S. Zyubina, A. S. Zyubin, Yu. A. Dobrovolsky, V. M. Volokhov, R. V. Pisarev, A. V. Pisareva, L. V. Shmygleva, Russ. J. Electrochem. (Engl. Transl.), 2013, 49, 788–793 [Elektrokhimiya, 2013, 49, 878–884].

    Article  CAS  Google Scholar 

  62. G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758–1775.

    Article  CAS  Google Scholar 

  63. G. Kresse, J. Hafner, Phys. Rev. B, 1993, 47, 558–561.

    Article  CAS  Google Scholar 

  64. G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251–14269.

    Article  CAS  Google Scholar 

  65. G. Kresse, J. Furthmuller, Comput. Mater. Sci., 1996, 6, 15–50.

    Article  CAS  Google Scholar 

  66. G. Kresse, J. Furthmuller, Phys. Rev. B, 1996, 54, 11169–11186.

    Article  CAS  Google Scholar 

  67. M. Methfessel, A. T. Paxton, Phys. Rev. B, 1989, 40, 3616–3621.

    Article  CAS  Google Scholar 

  68. T. S. Zyubina, L. V. Shmygleva, R. V. Pisarev, A. S. Zyubin, A. V. Pisareva, Yu. A. Dobrovolsky, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 1765 [Izv. Akad. Nauk, Ser. Khim, 2014, 1765].

    Article  CAS  Google Scholar 

  69. J. K. Khedkar, R. V. Pinjari, S. P. Gejji, J. Phys. Chem. A, 2011, 115, 10624–10637.

    Article  CAS  Google Scholar 

  70. J. K. Khedkar, M. M. Deshmukh, S. R. Gadre, S. P. Gejji, J. Phys. Chem. A, 2012, 116, 3739–3744.

    Article  CAS  Google Scholar 

  71. Vl. V. Voevodin, S. A. Zhumatiy, S. I. Sobolev, A. S. Antonov, P. A. Bryzgalov, D. A. Nikitenko, K. S. Stefanov, Vad. V. Voevodin, Praktika superkomp´yutera "Lomonosov" [Practice of the Lomonosov Supercomputer], Otkrytye Sistemy [Open Systems], Open Systems Publ., Moscow, 2012, Iss. 7 (in Russian). Also available on the Internet at http:// www.osp.ru/os/2012/07/13017641/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Zyubin.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 0062—0069, January, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyubina, T.S., Shmygleva, L.V., Pisarev, R.V. et al. Crystalline hydrates of calix[4]arene-para-sulfonic acid with n (n = 6–16) water molecules: a structure modeling. Russ Chem Bull 66, 62–69 (2017). https://doi.org/10.1007/s11172-017-1700-4

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-017-1700-4

Keywords

Navigation