Skip to main content
Log in

Organic clays. Synthesis and structure of Na5[calix[4] arene sulfonate] · 12 H2O, K5[calix[4]arene sulfonate]·8 H2O, Rb5[calix[4]arene sulfonate]·5 H2O, and Cs5[calix[4] arene sulfonate] ·4 H2O

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The title calixarenes all exist in the solid state as bilayers of anionic calixarenes in the cone configuration. These layers alternate with inorganic regions which contain the cations and the water molecules. The overall structures bear a close resemblance to those found for clay minerals. The sodium salt crystallizes in the triclinic space groupPĪ witha = 10.998(6),b = 13.582(5),c = 14.472(5) Å,α = 74.01(3),β = 89.09(4),γ = 86.50(4)°, andZ = 2 forD calc = 1.72 g cm−3. Refinement based on 4727 observed reflections led to a conventionalR = 0.050. The potassium salt crystallizes in the triclinic space groupPĪ witha = 11.815(9),b = 13.636(6),c = 14.040(9) Å,α = 100.24(5),β = 111.86(9),γ = 95,14(9)°, andZ = 2 forD calc = 1.77 g cm−3. Refinement based on 2977 observed reflections led toR = 0.15. The rubidium and cesium salts are isostructural and crystallize in the monoclinic space groupP21/n with parameters for Rb[Cs]a = 11.603(5) [11.704(3)],b = 28.607(8) [29.747(9)],c = 12.512(5) [12.604(4)] Å,β = 91.70(4) [91.63(2)°], andZ = 4 forD calc = 2.01 [2.24] g cm−3. Refinement based on 1750 [4257] observed reflections led toR = 0.108 [0.075]. Disorder of the cations was observed for the rubidium and cesium salts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Andreetti, G. Calestani, F. Ugozzoli, A. Arduini, E. Ghidini, A. Pochini, and R. Ungaro:J. Incl. Phenom. 5, 123 (1987).

    Google Scholar 

  2. P. D. Beer and A. D. Keefe:J. Incl. Phenom. 5, 499 (1987).

    Google Scholar 

  3. A. W. Coleman, S. G. Bott, and J. L. Atwood:J. Incl. Phenom. 5, 581 (1987).

    Google Scholar 

  4. S. G. Bott, A. W. Coleman, and J. L. Atwood:J. Incl. Phenom. 5, 747 (1987).

    Google Scholar 

  5. C. D. Gutsche, M. Igbal, and I. Alam:J. Am. Chem. Soc. 109, 4314, (1987).

    Google Scholar 

  6. D. N. Reinhoudt, P. J. Dijkstra, P. J. A. Veld, K. E. Bugge, S. Harkema, R. Ungaro, and E. Ghidini:J. Am. Chem. Soc. 109, 4761 (l987).

    Google Scholar 

  7. S. Shinkai, H. Koreishi, K. Ueda, T. Arimura, and O. Manaba:J. Am. Chem. Soc. 209, 6371 (1987).

    Google Scholar 

  8. S. Shinkai, S. Mori, T. Arimura, and O. Manabe:J. Chem. Soc., Chem. Commun. 238 (1987).

  9. G. Calestani, F. Ugozzoli, A. Arduini, E. Ghidini, and R. Ungaro:J. Chem. Soc., Chem. Commun. 344 (1987).

  10. G. Ferguson, B. Kaitner, M. A. McKervey, and E. M. Seward:J. Chem. Soc., Chem. Commun. 584 (1987).

  11. G. R. Newkome, Y. J. Joo, and F. R. Fronczek:J. Chem. Soc., Chem. Commun. 854 (1987).

  12. V. Bohmer, L. Merkel, and U. Junz:J. Chem. Soc., Chem. Commun. 896 (1987).

  13. V. Bohmer, H. Goldmann, R. Kaptein, and L. Zetta:J. Chem. Soc., Chem. Commun. 1358 (1987).

  14. S. Shinkai, T. Arimura, H. Satch, and O. Manabe:J. Chem. Soc., Chem. Commun. 1495 (1987).

  15. B. M. Furphy, J. M. Harrowfield, D. L. Kepert, B. W. Skelton, A. H. White, and F. R. Wilner:Inorg. Chem. 26, 4231 (1987).

    Google Scholar 

  16. E. Paulus, V. Bohmer, H. Goldman, and W. Vogt:J. Chem. Soc., Perkin Trans. 2, 1609 (1987).

    Google Scholar 

  17. S. Shinkai, K. Araki, T. Tsubaki, T. Arimura, and O. Manabe:J. Chem. Soc., Perkin Trans. I 2297 (1987).

  18. H. Casabianca, J. Royer, A. Satrallah, A. Taty-C, and J. Vicens:Tetrahedron Lett. 28, 6595 (1987).

    Google Scholar 

  19. A. W. Coleman, S. G. Bott, S. D. Morley, C. M. Means, K. D. Robinson, H. Zhang, and J. L. Atwood:Angew. Chem. Int. Ed. Engl. 27, 1361 (1988).

    Google Scholar 

  20. S. G. Bott, A. W. Coleman, and J. L. Atwood:J. Am. Chem. Soc. 110, 610 (1988).

    Google Scholar 

  21. S. Shinkai, T. Mori, T. Tsubaki, T. Sone, and O. Manche:Chem. Lett. 1351 (1986).

  22. B. Klar, B. Hingerty, and W. Saenger:Acta Crystallogr. B36, 1154 (1980).

    Google Scholar 

  23. S. W. Bailey: Crystal Structures of Clay Minerals and their Identifications, Ed. G. W. Brindley and G. Brown, Monograph 5 of Mineralogical Society, London, 1980.

    Google Scholar 

  24. B. Mason and L. G. Berry:Elements of Mineralogy, Freeman, San Francisco, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82074 (95 pages).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atwood, J.L., Coleman, A.W., Zhang, H. et al. Organic clays. Synthesis and structure of Na5[calix[4] arene sulfonate] · 12 H2O, K5[calix[4]arene sulfonate]·8 H2O, Rb5[calix[4]arene sulfonate]·5 H2O, and Cs5[calix[4] arene sulfonate] ·4 H2O. J Incl Phenom Macrocycl Chem 7, 203–211 (1989). https://doi.org/10.1007/BF01060722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01060722

Key words

Navigation