Skip to main content

Advertisement

Log in

Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Syngas is a very important intermediate in chemical industry for energy chemicals production through F–T synthesis. Methane steam reforming (MSR) and dry reforming (MDR) reactions are two extensively studied approaches for syngas production. Developing sintering-resistant catalyst for syngas production from the reforming reactions is a hot topic because high-temperature requirement for the reactions always deactivates catalyst due to sintering and carbon deposition. In this study, we synthesized sintering-resistant Ni@SiO2 catalyst for stable performances of MSR and MDR. Characterization of TEM, XRD, etc., revealed that the Ni@SiO2 catalyst could maintain original core–shell structure and preserve Ni nanoparticle size at temperature as high as 1123 K. The excellent sintering resistance was attributed to encapsulation of thermally stable SiO2 nanospheres, which confined Ni nanoparticles migration and thus avoided aggregation. The work provided a potential sintering-resistant catalyst for heterogeneous reactions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.C.J. Bradford, M.A. Vannice, Catal. Rev. Sci. Eng. 41, 1 (1999)

    Article  CAS  Google Scholar 

  2. N.A.K. Aramouni, J.G. Touma, B.A. Tarboush, J. Zeaiter, M.N. Ahmad, Renew. Sustain. Energy Rev. 82, 2570 (2018)

    Article  CAS  Google Scholar 

  3. C. Wang, Y. Qiu, X. Zhang, Y. Zhang, N. Sun, Y. Zhao, Catal. Sci. Technol. 8, 4877 (2018)

    Article  CAS  Google Scholar 

  4. H. Ay, D. Üner, Appl. Catal. B Environ. 179, 128 (2015)

    Article  CAS  Google Scholar 

  5. F. Wang, B. Han, L. Zhang, L. Xu, H. Yu, W. Shi, Appl. Catal. B Environ. 235, 26 (2018)

    Article  CAS  Google Scholar 

  6. F. Wang, L. Xu, W. Shi, J. Zhang, K. Wu, Y. Zhao, H. Li, H.X. Li, G.Q. Xu, W. Chen, Nano Res. 10, 364 (2017)

    Article  CAS  Google Scholar 

  7. L. Yue, J. Li, C. Chen, X. Fu, Y. Gong, X. Xia, J. Hou, C. Xiao, X. Chen, L. Zhao, G. Ran, H. Wang, Fuel 218, 335 (2018)

    Article  CAS  Google Scholar 

  8. M.G. Vinum, M.R. Almind, J.S. Engbæk, S.B. Vendelbo, M.F. Hansen, C. Frandsen, J. Bendix, P.M. Mortensen, Angew. Chem. Int. Ed. 57, 10569 (2018)

    Article  CAS  Google Scholar 

  9. A. Obradović, J. Levec, Ind. Eng. Chem. Res. 56, 13301 (2017)

    Article  Google Scholar 

  10. F. Che, J.T. Gray, S. Ha, J.-S. McEwen, ACS Catal. 7, 6957 (2017)

    Article  CAS  Google Scholar 

  11. F. Wang, L. Xu, J. Yang, J. Zhang, L. Zhang, H. Li, Y. Zhao, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Catal. Today 281, 295 (2017)

    Article  CAS  Google Scholar 

  12. F. Wang, L. Xu, J. Zhang, Y. Zhao, H. Li, H.X. Li, K. Wu, G.Q. Xu, W. Chen, Appl. Catal. B Environ. 180, 511 (2016)

    Article  CAS  Google Scholar 

  13. F. Mirzaei, M. Rezaei, F. Meshkani, Z. Fattah, J. Ind. Eng. Chem. 21, 662 (2015)

    Article  CAS  Google Scholar 

  14. Z. Liu, P. Lustemberg, R.A. Gutiérrez, J.J. Carey, R.M. Palomino, M. Vorokhta, D.C. Grinter, P.J. Ramírez, V. Matolín, M. Nolan, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Angew. Chem. Int. Ed. 56, 13041 (2017)

    Article  CAS  Google Scholar 

  15. M.A. Muñoz, J.J. Calvino, J.M. Rodríguez-Izquierdo, G. Blanco, D.C. Arias, J.A. Pérez-Omil, J.C. Hernández-Garrido, J.M. González-Leal, M.A. Cauqui, M.P. Yeste, Appl. Surf. Sci. 426, 864 (2017)

    Article  Google Scholar 

  16. J. Chen, W.X. Piao, L.Y. Jin, Z. Li, F. Zhang, J.M. Kim, M. Jin, Res. Chem. Intermed. 44, 3867 (2018)

    Article  CAS  Google Scholar 

  17. Y. Dai, P. Lu, Z. Cao, C.T. Campbell, Y. Xia, Chem. Soc. Rev. 47, 4314 (2018)

    Article  CAS  Google Scholar 

  18. C. Liu, J. Ye, J. Jiang, Y. Pan, ChemCatChem 3, 529 (2011)

    Article  CAS  Google Scholar 

  19. Y. Lu, D. Guo, Y. Ruan, Y. Zhao, S. Wang, X. Ma, J CO2 Util. 24, 190 (2018)

    Article  CAS  Google Scholar 

  20. F. Wang, L. Zhang, J. Deng, J. Zhang, B. Han, Y. Wang, Z. Li, H. Yu, W. Cai, Z. Deng, Fuel Process. Technol. 193, 94 (2019)

    Article  CAS  Google Scholar 

  21. L. Zhang, F. Wang, J. Zhu, B. Han, W. Fan, L. Zhao, W. Cai, Z. Li, L. Xu, H. Yu, W. Shi, Fuel 256, 115954 (2019)

    Article  CAS  Google Scholar 

  22. F. Wang, L. Xu, W. Shi, J. CO2 Util. 16, 318 (2016)

    Article  CAS  Google Scholar 

  23. J.W. Han, J.S. Park, M.S. Choi, H. Lee, Appl. Catal. B Environ. 203, 625 (2017)

    Article  CAS  Google Scholar 

  24. K. Mette, S. Kühl, A. Tarasov, M.G. Willinger, J. Kröhnert, S. Wrabetz, A. Trunschke, M. Scherzer, F. Girgsdies, H. Düdder, K. Kähler, K.F. Ortega, M. Muhler, R. Schlögl, M. Behrens, T. Lunkenbein, ACS Catal. 6, 7238 (2016)

    Article  CAS  Google Scholar 

  25. D. Chen, K.O. Christensen, E. Ochoa-Fernández, Z. Yu, B. Tøtdal, N. Latorre, A. Monzón, A. Holmen, J. Catal. 229, 82 (2005)

    Article  CAS  Google Scholar 

  26. K.O. Christensen, D. Chen, R. Lødeng, A. Holmen, Appl. Catal. A General 314, 9 (2006)

    Article  CAS  Google Scholar 

  27. Z. Li, X. Hu, L. Zhang, S. Liu, G. Lu, Appl. Catal. A General 417–418, 281 (2012)

    Article  Google Scholar 

  28. J.W. Han, C. Kim, J.S. Park, H. Lee, Chemsuschem 7, 451 (2014)

    Article  CAS  Google Scholar 

  29. Z. Li, L. Mo, Y. Kathiraser, S. Kawi, ACS Catal. 4, 1526 (2014)

    Article  CAS  Google Scholar 

  30. H. Peng, X. Zhang, L. Zhang, C. Rao, J. Lian, W. Liu, J. Ying, G. Zhang, Z. Wang, N. Zhang, X. Wang, ChemCatChem 9, 127 (2017)

    Article  CAS  Google Scholar 

  31. X. Feng, W. Li, D. Liu, Z. Zhang, Y. Duan, Y. Zhang, Small 13, 1700941 (2017)

    Article  Google Scholar 

  32. S. Das, J. Ashok, Z. Bian, N. Dewangan, M.H. Wai, Y. Du, A. Borgna, K. Hidajat, S. Kawi, Appl. Catal. B Environ. 230, 220 (2018)

    Article  CAS  Google Scholar 

  33. R. Dębek, K. Zubek, M. Motak, P. Da Costa, T. Grzybek, Res. Chem. Intermed. 41, 9485 (2015)

    Article  Google Scholar 

  34. H.-J. Kim, E.-H. Yang, Y.S. Noh, G.H. Hong, J.I. Park, S.A. Shin, K.-Y. Lee, D.J. Moon, Res. Chem. Intermed. 44, 1131 (2018)

    Article  CAS  Google Scholar 

  35. X. Du, D. Zhang, R. Gao, L. Huang, L. Shi, J. Zhang, Chem. Commun. 49, 6770 (2013)

    Article  CAS  Google Scholar 

  36. Z. Bian, S. Kawi, ChemCatChem 10, 320 (2018)

    Article  CAS  Google Scholar 

  37. Q. Huang, X. Fang, Q. Cheng, Q. Li, X. Xu, L. Xu, W. Liu, Z. Gao, W. Zhou, X. Wang, ChemCatChem 9, 3563 (2017)

    Article  CAS  Google Scholar 

  38. Q. Zhang, M. Sun, P. Ning, K. Long, J. Wang, T. Tang, J. Fan, H. Sun, L. Yin, Q. Lin, Appl. Surf. Sci. 469, 368 (2019)

    Article  CAS  Google Scholar 

  39. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addison-Wesley, Menlo Park, 1978)

    Google Scholar 

Download references

Acknowledgements

Financial supports from China Postdoctoral Science Foundation (2018T110454), Jiangsu Province Natural Science Foundation (BK20170526), Jiangsu Province Funded Postdoctoral Researcher Project, National Natural Science Foundation of China (No. 21805169), Open Fund of Chemistry Department in Qingdao University of Science and Technology (QUSTHX201917), Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team [Hydrogen energy chemistry innovation team] and Senior Talents Start-Up Fund of Jiangsu University (16JDG062) are well acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fagen Wang or Hao Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Wang, F., Zhang, L. et al. Syngas production from methane steam reforming and dry reforming reactions over sintering-resistant Ni@SiO2 catalyst. Res Chem Intermed 46, 1735–1748 (2020). https://doi.org/10.1007/s11164-019-04060-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-019-04060-3

Keywords

Navigation