Skip to main content

Advertisement

Log in

Super-efficient photocatalytic degradation of methylene blue, methyl orange and rhodamine B dyes using low-cost ZnO–MgO nanocomposite under natural sunlight and its bactericidal activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A stereotypical co-precipitation method was used to prepare MgO–ZnO (MZ) nanocomposite. To improve the efficiency of the photodegradation mechanism under natural sunlight irradiation, coupling of wide band gap semiconducting materials like ZnO and MgO was chosen. Surface morphology reveals the formation of nanoplates and its thickness is around 35–100 nm which is suitable for the absorption of photons during the photocatalysis mechanism. The MZ nanocomposite’s absorption peak was obtained in the visible region and therefore the photodegradation experiment was carried out for both cationic and anionic dyes and it completely degraded after 20 min of sunlight irradiation. After 5 times of reusability over, rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) dye, the photocatalytic efficiency varied from 96.24 to 91%, 91.16–85% and 98.26–92%, respectively. These nanomaterials also exhibited excellent antibacterial activity against B.subtilis and E.coli bacteria. It was found that the antibacterial efficiency was increased with an increasing concentration of MgO, ZnO and MZ. The results clearly indicate that the prepared MZ showed improved antibacterial capabilities when compared to pure MgO and ZnO, implying that microbial growth in the ecosystem can be reduced by employing MZ. MZ nanomaterial-based photocatalysts discover a new paradigm for the industrial wastewater treatment process in future.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be available based on the proper request.

References

  1. L.S. Reddy Yadav, K. Lingaraju, K. Manjunath, G.K. Raghu, K.H. Sudheer Kumar, G. Nagaraju, Mater. Res. Express 4, aa5b49 (2017)

    Article  Google Scholar 

  2. J.C. Sin, S.M. Lam, H. Zeng, H. Lin, H. Li, L. Huang, K.O. Tham, A.R. Mohamed, J.W. Lim, Environ. Res. 212, 113394 (2022)

    Article  CAS  PubMed  Google Scholar 

  3. S.M. Lam, J.C. Sin, H. Zeng, H. Lin, H. Li, A.R. Mohamed, J.W. Lim, Chemosphere 287, 132384 (2022)

    Article  CAS  PubMed  Google Scholar 

  4. M.A. Bhatti, S.J. Gilani, A.A. Shah, I.A. Channa, K.F. Almani, A.D. Chandio, I.A. Halepoto, A. Tahira, M.N.B. Jumah, Z.H. Ibupoto, Nanomaterials 12, 2766 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. X. Zheng, M. Huang, Y. You, X. Fu, Y. Liu, J. Wen, Chem. Eng. J. 334, 1399 (2018)

    Article  CAS  Google Scholar 

  6. S.M. Lam, J.C. Sin, H. Zeng, H. Lin, H. Li, Y.Y. Chai, M.K. Choong, A.R. Mohamed, Mater. Sci. Semicond. Process. 123, 105574 (2021)

    Article  CAS  Google Scholar 

  7. S.M. Lam, J.C. Sin, H. Zeng, H. Lin, H. Li, Z. Qin, J.W. Lim, A.R. Mohamed, Sep. Purif. Technol. 265, 118495 (2021)

    Article  CAS  Google Scholar 

  8. C. Abed, M. Ben Ali, A. Addad, H. Elhouichet, Mater. Res. Bull. 110, 230 (2019)

    Article  CAS  Google Scholar 

  9. V. Revathi, K. Karthik, J. Mater. Sci. Mater. Electron. 29, 18519 (2018)

    Article  CAS  Google Scholar 

  10. A.J. Laghari, U. Aftab, A. Tahira, A.A. Shah, A. Gradone, M.Y. Solangi, A.H. Samo, M. Kumar, M.I. Abro, M. wasim Akhtar, R. Mazzaro, V. Morandi, A.M. Alotaibi, A. Nafady, A. Infantes-Molina, Z.H. Ibupoto, Int. J. Hydrogen Energy (2022). https://doi.org/10.1016/j.ijhydene.2022.04.169

  11. Z.A. Ujjan, M.A. Bhatti, A.A. Shah, A. Tahira, N.M. Shaikh, S. Kumar, A.Q. Mugheri, S.S. Medany, A. Nafady, F. Alnjiman, M. Emo, B. Vigolo, Z.H. Ibupoto, Ceram. Int. 48, 5535 (2022)

    Article  CAS  Google Scholar 

  12. A.A. Shah, M.A. Bhatti, A. Tahira, A.D. Chandio, I.A. Channa, A.G. Sahito, E. Chalangar, M. Willander, O. Nur, Z.H. Ibupoto, Ceram. Int. 46, 9997 (2020)

    Article  CAS  Google Scholar 

  13. S.N.U.S. Bukhari, A.A. Shah, M.A. Bhatti, A. Tahira, I.A. Channa, A.K. Shah, A.D. Chandio, W.A. Mahdi, S. Alshehri, Z.H. Ibhupoto, W. Liu, Nanomaterials 12, 3568 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.A. Bhatti, K.F. Almaani, A.A. Shah, A. Tahira, A.D. Chandio, A.Q. Mugheri, A. Liaquat Bhatti, B. Waryani, S.S. Medany, A. Nafady, Z.H. Ibupoto, J. Clust. Sci. 33, 1445 (2022)

    Article  CAS  Google Scholar 

  15. A.A. Shah, A.D. Chandio, A.A. Sheikh, J. Nanosci. Nanotechnol. 21, 2483 (2021)

    Article  CAS  PubMed  Google Scholar 

  16. R. Dadi, R. Azouani, M. Traore, C. Mielcarek, A. Kanaev, Mater. Sci. Eng. C 104, 109968 (2019)

    Article  CAS  Google Scholar 

  17. S.M. Lam, M.K. Choong, J.C. Sin, H. Zeng, L. Huang, L. Hua, H. Li, Z.H. Jaffari, K.H. Cho, J. Environ. Chem. Eng. 10, 108284 (2022)

    Article  CAS  Google Scholar 

  18. S.M. Lam, Z.H. Jaffari, J.C. Sin, H. Zeng, H. Lin, H. Li, A.R. Mohamed, D.Q. Ng, J. Mol. Liq. 326, 115372 (2021)

    Article  CAS  Google Scholar 

  19. J. Alphas Jebasingh, R. Stanley, S. ManishaVidyavathy, Mater. Lett. 279, 128460 (2020)

    Article  CAS  Google Scholar 

  20. R. Stanley, J.A. Jebasingh, P.K. Stanley, P. Ponmani, M.E. Shekinah, J. Vasanthi, Optik (Stuttg) 231, 166518 (2021)

    Article  Google Scholar 

  21. M.M.J. Sadiq, U.S. Shenoy, D.K. Bhat, J. Phys. Chem. Solids 109, 124 (2017)

    Article  CAS  Google Scholar 

  22. R. Stanley, J.A. Jebasingh, S.M. Vidyavathy, Int. J. Environ. Sci. Technol. 19, 11249 (2022)

    Article  CAS  Google Scholar 

  23. A. Sierra-Fernandez, S.C. De La Rosa-García, L.S. Gomez-Villalba, S. Gómez-Cornelio, M.E. Rabanal, R. Fort, P. Quintana, A.C.S. Appl, Mater. Interfaces 9, 24873 (2017)

    Article  CAS  Google Scholar 

  24. H. Zhang, J. Hu, J. Xie, S. Wang, Y. Cao, RSC Adv. 9, 2011 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. N. Salehifar, Z. Zarghami, M. Ramezani, Mater. Lett. 167, 226 (2016)

    Article  CAS  Google Scholar 

  26. A. J. Jebasingh, R. Stanley, S. Manisha Vidyavathy, Optik (Stuttg). 179, 901 (2019)

  27. S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, J. Phys. Chem. C 117, 27023 (2013)

    Article  CAS  Google Scholar 

  28. Y.X. Zhang, Y. Jia, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 228, 123 (2018)

    Article  CAS  Google Scholar 

  29. D. Amaranatha Reddy, R. Ma, T.K. Kim, Ceram. Int. 41, 6999 (2015)

    Article  Google Scholar 

  30. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, S. Sivaramakrishnan, J. Photochem. Photobiol. B Biol. 190, 8 (2019)

    Article  CAS  Google Scholar 

  31. L. Huang, S. Chu, J. Wang, F. Kong, L. Luo, Y. Wang, Z. Zou, Catal. Today 212, 81 (2013)

    Article  CAS  Google Scholar 

  32. K. Mageshwari, S.S. Mali, R. Sathyamoorthy, P.S. Patil, Powder Technol. 249, 456 (2013)

    Article  CAS  Google Scholar 

  33. X. Xiang, L. Xie, Z. Li, F. Li, Chem. Eng. J. 221, 7975 (2013)

    Article  Google Scholar 

  34. H. Nouri, A. Habibi-Yangjeh, M. Azadi, J. Photochem. Photobiol. A Chem. 281, 59 (2014)

    Article  CAS  Google Scholar 

  35. M.A. Karimi, A. Hatefi-Mehrjardi, A. AskarpourKabir, M. Zaydabadi, Res. Chem. Intermed. 41, 6157 (2015)

    Article  CAS  Google Scholar 

  36. S. Klubnuan, P. Amornpitoksuk, S. Suwanboon, Mater. Sci. Semicond. Process. 39, 515 (2015)

    Article  CAS  Google Scholar 

  37. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Mater. Des. 107, 47 (2016)

    Article  CAS  Google Scholar 

  38. H. Li, Y. Liu, J. Tang, Y. Deng, Solid State Sci. 58, 14 (2016)

    Article  CAS  Google Scholar 

  39. A. Manohar, C. Krishnamoorthi, J. Photochem. Photobiol. B Biol. 173, 456 (2017)

    Article  CAS  Google Scholar 

  40. J. Kulkarni, R. Ravishankar, H. Nagabhushana, K.S. Anantharaju, R.B. Basavaraj, M. Sangeeta, H.P. Nagaswarupa, L. Renuka, Mater. Today Proc. 4, 11756 (2017)

    Article  Google Scholar 

  41. A. Samanta, M.N. Goswami, P.K. Mahapatra, Phys. E Low Dimens. Syst. Nanostructures 104, 254 (2018)

    Article  CAS  Google Scholar 

  42. R. Sathyamoorthy, K. Mageshwari, S.S. Mali, S. Priyadharshini, P.S. Patil, Ceram. Int. 39, 323 (2013)

    Article  CAS  Google Scholar 

  43. L. Duan, X. Zhao, Z. Zheng, Y. Wang, W. Geng, F. Zhang, J. Phys. Chem. Solids 76, 88 (2015)

    Article  CAS  Google Scholar 

  44. Y. Wang, X. Zhao, L. Duan, F. Wang, H. Niu, W. Guo, A. Ali, Mater. Sci. Semicond. Process. 29, 372 (2015)

    Article  CAS  Google Scholar 

  45. Q. Wang, T. Li, P. Xie, J. Ma, J. Environ. Chem. Eng. 5, 2648 (2017)

    Article  CAS  Google Scholar 

  46. S. Balu, S. Andra, S. Kannan, M. Vidyavathy, M. Muthalagu, Mater. Lett. 259, 126900 (2020)

    Article  CAS  Google Scholar 

  47. C. You, C. Han, X. Wang, Y. Zheng, Q. Li, X. Hu, H. Sun, Mol. Biol. Rep. 39, 9193 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. S.K. Balu, V. Sampath, S. Andra, S. Srinivasan Alagar, M. Vidyavathy, Mater. Sci. Eng. C 128, 112296 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Anna University, Chennai, India, for giving financial assistance to do this study via Anna Centenary Research Fellowship (ACRF). The authors extend their gratitude to Dr. S. Sivanesan, Professor, DAST, Anna University, for providing research facility (UV-Visible spectrometer); the authors also acknowledge IIT Madras SAIF and Department of Chemistry, MNIT-MRC Jaipur for providing analytical support.

Author information

Authors and Affiliations

Authors

Contributions

RS contributed to conceptualization, methodology, writing—original draft preparation, data curation, characterization. SKB contributed to experimental, data cross checking. AJ contributed to software, visualization, and validation. MV contributed to supervision, reviewing and editing investigation.

Corresponding author

Correspondence to S. Manisha Vidyavathy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4639 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stanley, R., Balu, S.K., Alphas Jebasingh, J. et al. Super-efficient photocatalytic degradation of methylene blue, methyl orange and rhodamine B dyes using low-cost ZnO–MgO nanocomposite under natural sunlight and its bactericidal activity. Res Chem Intermed 49, 2583–2602 (2023). https://doi.org/10.1007/s11164-023-04985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-023-04985-w

Keywords

Navigation