Skip to main content

Advertisement

Log in

Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research work, we have produced tungsten (W) doped ZnO nanostructures via low-temperature aqueous chemical growth method. The morphology, crystal arrays and composition was investigated by scanning electron microscopy (SEM), powder X-ray diffraction (XRD) and energy dispersive X-rays (EDX) respectively. The SEM results indicate the nanowire morphology before and after the doping of W into ZnO and XRD study has shown the hexagonal crystallography of W doped ZnO samples. The EDX study has confirmed the successful doping of W into ZnO crystal lattices. The photodegradation performance of methylene blue was evaluated with W doped ZnO samples and pristine ZnO in aqueous solution. The measured degradation efficiencies for the different W doped ZnO samples were 5 wt%, 10 wt%, 15 wt% and 20 wt% at pH 5 are 87.8%, 92.3%, 92.8% and 96.9%), at pH 9 (72.1%, 90.7%, 92.1%, and 96.4%) and at pH 11 (80%, 85%, 87% and 89%) for the time interval of 90 min respectively. The pH of dye solution has significant effect on the degradation efficiency. These findings show that the W doped ZnO samples have superior degradation efficiency of 96.6% in a very short interval of time. The swift degradation kinetics for the W doped ZnO samples is attributed to the reduction in the energy band gap, decrease in particle size, enhanced surface area, decrease in the recombination rate and foster charge separation process. The obtained results are exciting and providing efficient earth-abundant photocatalysts for the energy and environmental purposes.Kindly confirm the Given names and Family names for all the authors.They are correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7.
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Q. Xiang, J. Yu, and M. Jaroniec (2012). J. Am. Chem. Soc. 134, 6575–6578.

    Article  CAS  PubMed  Google Scholar 

  2. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69–96.

    Article  CAS  Google Scholar 

  3. P. Raizada, A. Sudhaik, and P. Singh (2019). A review Mater. Sci. Energy Technol. 2, 509–525.

    Google Scholar 

  4. S. Selvarajan, P. Malathy, A. Suganthi, and M. Rajarajan (2017). J. Ind. Eng. Chem. 53, 201–212.

    Article  CAS  Google Scholar 

  5. S. Vadivel, B. Paul, D. Maruthamani, M. Kumaravel, T. Vijayaraghavan, S. Hariganesh, and R. Pothu (2019). Mater. Sci. Energy Technol. 2, 112–116.

    Google Scholar 

  6. S. Adhikari, D. Sarkar, and G. Madras (2015). RSC Adv. 5, 11895–11904.

    Article  CAS  Google Scholar 

  7. U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. C. S. J. Avrutin, S. J. Cho, and H. Morkoc (2005). J. Appl. Phys. 98, 11.

    Article  CAS  Google Scholar 

  8. M. H. Farooq, I. Aslam, H. S. Anam, M. Tanveer, Z. Ali, U. Ghani, and R. Boddula (2019). Mater. Sci. Energy Technol. 2, 181–186.

    Google Scholar 

  9. M. Pirhashemi and A. Habibi-Yangjeh (2018). J. Photochem. Photobiol. A 363, 31–43.

    Article  CAS  Google Scholar 

  10. J. Ouyang, Z. Zhao, S. L. Suib, and H. Yang (2019). J. Colloid Interface Sci. 539, 135–145.

    Article  CAS  PubMed  Google Scholar 

  11. R. D. C. Soltani, A. Rezaee, A. R. Khataee, and M. Safari (2014). J. Ind. Eng. Chem. 20, 1861–1868.

    Article  CAS  Google Scholar 

  12. V. Punzi, A. Anbalagan, R. A. Borner, B. M. Svensson, M. Jonstrup, and B. Mattiasson (2015). Chem. Eng. J. 270, 290–299.

    Article  CAS  Google Scholar 

  13. C. S. Rodrigues, L. M. Madeira, and R. A. Boaventura (2013). Environ. Technol. 34, 719–729.

    Article  CAS  PubMed  Google Scholar 

  14. K. Salehi, A. Bahmani, B. Shahmoradi, M. A. Pordel, S. Kohzadi, and Y. Gong (2017). Int. J. Environ. Sci. Technol. 14, 2067–2076.

    Article  CAS  Google Scholar 

  15. R. D. C. Soltani, M. Safari, and M. Mashayekhi (2016). Ultrason. Sonochem. 30, 123–131.

    Article  CAS  Google Scholar 

  16. M. Pirhashemi and A. Habibi-Yangjeh (2017). J. Colloid Interface Sci. 491, 216–229.

    Article  CAS  PubMed  Google Scholar 

  17. S. Jorfi, R. D. C. Soltani, M. Ahmadi, A. Khataee, and M. Safari (2017). J. Environ. Manage. 187, 111–121.

    Article  CAS  PubMed  Google Scholar 

  18. W. Konicki, I. Pełech, E. Mijowska, and I. Jasinska (2012). Chem. Eng. J. 210, 87–95.

    Article  CAS  Google Scholar 

  19. M. Mousavi, A. Habibi-Yangjeh, and S. R. Pouran (2018). J. Mater. Sci: 29, 1719–1747.

    CAS  Google Scholar 

  20. L. I. Dapeng and Q. U. Jiuhui (2009). J. Environ. Sci. 21, 713–719.

    Article  CAS  Google Scholar 

  21. R. Daghrir, P. Drogui, and D. Robert (2012). J. Photochem. Photobiol. A 238, 41–52.

    Article  CAS  Google Scholar 

  22. W. X. Li (2013). J. Austr. Ceram. Soc. 49, 41–46.

    CAS  Google Scholar 

  23. H. Zhang, G. Chen, and D. W. Bahnemann (2009). J. Mater. Chem. 19, 5089–5121.

    Article  CAS  Google Scholar 

  24. A. Ghobadi, T. G. Ulusoy, R. Garifullin, M. O. Guler, and A. K. Okyay (2016). Sci. Rep. 6, 30587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. S. Perveen and M. A. Farrukh (2018). J. Mater. Sci. Mater. Electron. 29, 3219–3230.

    Article  CAS  Google Scholar 

  26. R. Atchudan, S. Perumal, D. Karthikeyan, and R. L. Yong (2017). J. Photochem. Photobiol. A: Chem. 333, 92–104.

    Article  CAS  Google Scholar 

  27. L. Shi, K. Zhao, and S. Liu (2018). Mater. Lett. 228, 121–124.

    Article  CAS  Google Scholar 

  28. Y. Guan, J. Wu, Q. Liu, M. Gu, Y. Lin, Y. Qi, T. Jia, W. Pan, P. He, and Q. Li (2019). Mater. Res. Bull. 120, 110579.

    Article  CAS  Google Scholar 

  29. Y. Wei, Y. Huang, Y. Fang, Y. Zhao, D. Luo, Q. Guo, L. Fan, and J. Wu (2019). Mater. Res. Bull. 119, 110571.

    Article  CAS  Google Scholar 

  30. X. Hu, G. Zhang, C. Yin, C. Li, and S. Zheng (2019). Mater. Res. Bull. 119, 110559.

    Article  CAS  Google Scholar 

  31. W. Wan, S. Yue, H. Li, Y. Liu, and Q. Zhang (2019). Mater. Res. Bull. 120, 110573.

    Article  CAS  Google Scholar 

  32. D. Ke, H. Liu, T. Peng, X. Liu, and K. Dai (2008). Mater. Lett. 62, 447–450.

    Article  CAS  Google Scholar 

  33. T. Tatsuma, S. Saitoh, N. Pailin, A. Yoshihisa, and A. Fujishima (2002). Langmuir 18, 7777–7779.

    Article  CAS  Google Scholar 

  34. E. Grilla, A. Petala, Z. Frontistis, I. K. Konstantinou, D. I. Kondarides, and D. Mantzavinos (2018). Appl. Catal. B: Environ. 231, 73–81.

    Article  CAS  Google Scholar 

  35. M. C. Oliveira, V. S. Fonseca, N. A. Neto, R. A. P. Ribeiro, E. Longo, S. R. de Lazaro, and S. and M. R. D. Bomio (2019). Ceram. Int. 46, 9446–9454.

    Article  CAS  Google Scholar 

  36. Q. Li, F. Wang, Y. Hua, Y. Luo, X. Liu, G. Duan, and X. Yang (2017). J. Colloid Interface Sci. 506, 207–216.

    Article  CAS  PubMed  Google Scholar 

  37. S. J. Hong, S. Lee, J. S. Jang, and J. S. Lee (2011). Energy Environ. Sci. 4, 1781–1787.

    Article  CAS  Google Scholar 

  38. P. Chatchai, Y. Murakami, S. Y. Kishioka, A. Y. Nosaka, and Y. Nosaka (2009). Electrochim. Acta. 54, 1147–1152.

    Article  CAS  Google Scholar 

  39. D. Bi and Y. Xu (2011). Langmuir. 27, 9359–9366.

    Article  CAS  PubMed  Google Scholar 

  40. D. Bi and Y. Xu (2013). J. Mol. Catal. A: Chem. 367, 103–107.

    Article  CAS  Google Scholar 

  41. W. Zhang, H. Li, Z. Ma, H. Li, and H. Wang (2019). Solid State Sci. 87, 58–63.

    Article  CAS  Google Scholar 

  42. L. Huang, H. Xu, Y. Li, H. Li, X. Cheng, J. Xia, Y. Xu, and G. Cai (2013). J. Chem. Soc. Dalton Trans. 42, 8606–8616.

    Article  CAS  Google Scholar 

  43. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann (1995). Chem. Rev. 95, 69–96.

    Article  CAS  Google Scholar 

  44. D. Bahnemann (1991). Springer. 251–276.

  45. V. Augugliaro, L. Palmisano, M. Schiavello, A. Sclafani, L. Marchese, G. Martra, and F. Miano (1991). Appl. Catal. 69, 323–340.

    Article  CAS  Google Scholar 

  46. H. Ohnishi, M. Matsumura, H. Tsubomura, and M. Iwasaki (1989). Ind. Eng. Chem. Res. 28, 719–724.

    Article  CAS  Google Scholar 

  47. A. Sharma, P. Rao, R. Mathur, and S. C. Ameta (1995). J. Photochem. Photobiol. A: Chem. 86, 197–200.

    Article  CAS  Google Scholar 

  48. C. Li, C. Han, Y. Zhang, Z. Zang, M. Wang, X. Tang, and J. Du (2017). Sol. Energy Mater. Sol. Cells. 172, 341–346.

    Article  CAS  Google Scholar 

  49. J. Zhang, Y. Wu, M. Xing, S. A. K. Leghari, and S. Sajjad (2010). Energy Environ. Sci. 3, 715–726.

    Article  CAS  Google Scholar 

  50. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, and K. Sun (2017). Nano Energy. 40, 195–202.

    Article  CAS  Google Scholar 

  51. G. Rothenberger, J. Moser, M. Graetzel, N. Serpone, and D. K. Sharma (1985). J. Am. Chem. Soc. 107, 8054–8059.

    Article  CAS  Google Scholar 

  52. N. Serpone and E. Pelizzetti, Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  53. N. Serpone, D. Lawless, J. Disdier, and J. M. Herrmann (1994). Langmuir 10, 643–652.

    Article  CAS  Google Scholar 

  54. H. Tada, A. Kokubu, M. Iwasaki, and S. Ito (2004). Langmuir. 20, 4665–4670.

    Article  CAS  PubMed  Google Scholar 

  55. M. Tong, G. Dai, and D. Gao (2001). Mater. Chem. Phys. 69, 176–179.

    Article  CAS  Google Scholar 

  56. J. Scarminio, A. Urbano, and B. Gardes (1999). Mater. Chem. Phys. 61, 143–146.

    Article  CAS  Google Scholar 

  57. L. Su, H. Wang, and Z. Lu (1998). Mater. Chem. Phys. 56, 266–270.

    Article  CAS  Google Scholar 

  58. T. Ohno, F. Tanigawa, K. Fujihara, S. Izumi, and M. Matsumura (1998). J. Photochem. Photobiol. A: Chem. 118, 41–44.

    Article  CAS  Google Scholar 

  59. C. L. Yu, J. M. Yu, W. Q. Zhou, and K. Yang (2010). Catal. Lett. 140 (3–4), 172–183.

    Article  CAS  Google Scholar 

  60. C. L. Yu and J. M. Yu (2009). Catal. Lett. 129, 462.

    Article  CAS  Google Scholar 

  61. C. L. Yu, K. Yang, J. M. Yu, P. Peng, F. F. Cao, and X. Li (2011). Acta Physico-Chimica Sinica. 27, 505512.

    Google Scholar 

  62. J. Zhang, Q. Xu, Z. C. Feng, M. J. Li, and C. Li (2008). Angewandte Chem. 120, 1790–1793.

    Article  Google Scholar 

  63. F. Xu, P. Zhang, A. Navrotsky, Z. Y. Yuan, T. Z. Ren, M. Halasa, and B. L. Su (2007). Chem. Mater. 19, 5680–5686.

    Article  CAS  Google Scholar 

  64. D. Li and H. Haneda (2003). Chemosphere. 51, 129–137.

    Article  CAS  PubMed  Google Scholar 

  65. Y. X. Wang, X. Y. Li, N. Wang, X. Quan, and Y. Y. Chen (2008). Separ. Purif. Technol. 62, 727–732.

    Article  CAS  Google Scholar 

  66. J. Han, L. Y. Shi, R. M. Cheng, Y. W. Chen, P. F. Dong, and Q. W. Shao (2008). Chin. J. Inorg. Mater. 24, 950–955.

    CAS  Google Scholar 

  67. J. Xu, Y. Chang, Y. Zhang, S. Ma, Y. Qu, and C. Xu (2008). Appl. Surf. Sci. 255, 1996–1999.

    Article  CAS  Google Scholar 

  68. T. H. Fu, Q. Q. Gao, F. Liu, H. J. Dai, and X. M. Kou (2010). J. Chin. J. Catal. 31, 797.

    CAS  Google Scholar 

  69. C. Wang, J. C. Zhao, X. M. Wang, B. X. Mai, G. Y. Sheng, P. A. Peng, and J. M. Fu (2002). Appl. Catal. B. 39, 269–279.

    Article  CAS  Google Scholar 

  70. C. Wang, P. Wang, and B. Q. Xu (2004). Chin. J. Catal. 25, 967.

    CAS  Google Scholar 

  71. L. C. Chen, Y. J. Tua, Y. S. Wang, R. S. Kan, and C. M. Huang (2008). Journal of Photochemistry and Photobiology A: Chemistry. 199, 170–178.

    Article  CAS  Google Scholar 

  72. K. Muthu, K. Selvam, B. Krishnakumar, and M. Swaminathan (2009). Appl. Catal. A. 358, 259–263.

    Article  CAS  Google Scholar 

  73. J. Tian, J. Wang, J. Dai, X. Wang, and Y. Yin (2009). Surf. Coat. Technol. 204, 723–730.

    Article  CAS  Google Scholar 

  74. K. Nakata and A. Fujishima (2012). J. Photochem. Photobiol. C 13, 169–189.

    Article  CAS  Google Scholar 

  75. Z. Zou and H. Arakawa (2003). J. Photochem. Photobiol. A. 158, 145–162.

    Article  CAS  Google Scholar 

  76. H. F. Moafi, M. A. Zanjanchi, and A. F. Shojaie (2013). Mater. Chem. Phys. 139, 856–864.

    Article  CAS  Google Scholar 

  77. R. Ebrahimi, A. Maleki, Y. Zandsalimi, R. Ghanbari, B. Shahmoradi, R. Rezaee, M. Safari, S. W. Joo, H. Daraei, S. H. Puttaiah, and O. Giahi (2019). J. Ind. Eng. Chem. 73, 297–305.

    Article  CAS  Google Scholar 

  78. S.K. Godlaveeti, S. Jangiti, A.R. Somala, H. Maseed, and R.R.Nagireddy ( 2020). J. Clust. Sci. 1–8.

  79. S. K. Godlaveeti, H. Maseed, S. A. Reddy, and R. R. Nagireddy (2020). Adv. Nat. Sci. 11, 025021.

    CAS  Google Scholar 

  80. G. S. Kumar, B. Venkataramana, S. A. Reddy, H. Maseed, and R. R. Nagireddy (2020). Adv. Nat. Sci. 11, 035006.

    CAS  Google Scholar 

  81. G. S. Kumar, S. A. Reddy, H. Maseed, and N. R. Reddy (2020). Funct. Mater. Lett. 13, 2051005.

    Article  CAS  Google Scholar 

  82. G.S. Kumar, N.R. Reddy, B. Sravani, L.S. Sarma, T.V. Reddy, V. Madhavi, and S.A. Reddy (20). J. Clust. Sci. 1–10.

  83. Y. Changlin, Y. Kai, S. Qing, C. Y. Jimmy, C. Fangfang, and L. Xin (2011). Chin. J. Catal. 32, 555–565.

    Article  CAS  Google Scholar 

  84. J. Xie, Z. Zhou, Y. Lian, Y. Hao, X. Liu, and M. Li (2014). Ceram. Int. 40, 12519–12524.

    Article  CAS  Google Scholar 

  85. K. Tennakone, O. Ileperuma, J. Bandara, and W. Kiridena (1992). Semicond. Sci. Technol. 7, 423.

    Article  CAS  Google Scholar 

  86. T. Jia, W. Wang, F. Long, Z. Fu, H. Wang, and Q. Zhang (2009). J. Alloys Compd. 484, 410–415.

    Article  CAS  Google Scholar 

  87. M. A. Behnajady, N. Modirshahla, and R. Hamzavi (2006). J. Hazard. Mater. 133, 226–232.

    Article  CAS  PubMed  Google Scholar 

  88. R. Lei, H. Zhang, H. Ni, R. Chen, H. Gu, and B. Zhang (2019). Appl. Surf. Sci. 463, 363–373.

    Article  CAS  Google Scholar 

  89. A. K. L. Sajjad, S. Sajjad, and A. Iqbal (2018). Ceram. Int. 44, 9364–9371.

    Article  CAS  Google Scholar 

  90. J. Xie, Z. Zhou, Y. Lian, Y. Hao, X. Liu, M. Li, and Y. Wei (2014). Ceram. Int. 40, 12519–12524.

    Article  CAS  Google Scholar 

  91. Y. U. Changlin, Y. A. N. G. Kai, S. H. U. Qing, C. Y. Jimmy, C. A. O. Fangfang, and L. I. Xin (2011). Chin. J. Catal. 32 (3–4), 555–565.

    Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to the Researchers Supporting Project number (RSP-2021/79) at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayman Nafady or Zafar Hussain Ibupoto.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1961 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatti, M.A., Almaani, K.F., Shah, A.A. et al. Low Temperature Aqueous Chemical Growth Method for the Doping of W into ZnO Nanostructures and Their Photocatalytic Role in the Degradration of Methylene Blue. J Clust Sci 33, 1445–1456 (2022). https://doi.org/10.1007/s10876-021-02069-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02069-6

Keywords

Navigation