Skip to main content
Log in

Effective photocatalytic degradation of antibiotic chloramphenicol and anionic direct violet 51 dye using g-C3N4 embedded NiO nanocomposite

  • Research
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

In this study, a various weight percentage (50, 100, and 150 wt%) of g-C3N4 embedded NiO nanocomposite was synthesized by thermal polymerization followed by a simple hydrothermal technique. The synthesized photocatalysts were thoroughly characterized by employing sophisticated instrument methods such as p-XRD, HR-TEM, HR-XPS, UV–Vis DRS, and PL. The optimum incorporation of g-C3N4 (100 wt%) into the NiO system significantly increased the photocatalytic degradation of antibiotic chloramphenicol (CPL) with a percentage of 93.95% after 150 min of light exposure. Similarly, the Ni-CN-150 nanocomposite successfully degraded anionic direct violet 51 azo dye at 90.42% after 120 min of light irradiation. The efficient decrease of electron–hole recombination by transferring electrons between junctions improved photocatalytic degradation. The nanocomposite remained stable after six cycles of degradation for CPL and DV 51 pollutants in recycling trials. Quenching investigations identified the main reactive species that degrade pollutants and detailed the likely photocatalytic reaction process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

Data availability

Available based on request.

References  

  1. Xu Q, Song Z, Ji S et al (2019) The photocatalytic degradation of chloramphenicol with electrospun Bi2O2CO3-poly(ethylene oxide) nanofibers: the synthesis of crosslinked polymer, degradation kinetics, mechanism and cytotoxicity. RSC Adv 9:29917–29926. https://doi.org/10.1039/c9ra06346c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sodeinde KO, Olusanya SO, Lawal OS, et al (2022) Enhanced adsorptional-photocatalytic degradation of chloramphenicol by reduced graphene oxide-zinc oxide nanocomposite. Sci Rep 12. https://doi.org/10.1038/s41598-022-21266-5

  3. Zhu C, Li J, Chai Y, et al (2022) Synergistic Cr(VI) Reduction and chloramphenicol degradation by the visible-light-induced photocatalysis of CuInS2: performance and reaction mechanism. Front Chem 10. https://doi.org/10.3389/fchem.2022.964008

  4. Shokri M, Jodat A, Modirshahla N, Behnajady MA (2013) Photocatalytic degradation of chloramphenicol in an aqueous suspension of silver-doped TiO 2 nanoparticles. Environ Technol 34:1161–1166. https://doi.org/10.1080/09593330.2012.743589

    Article  CAS  PubMed  Google Scholar 

  5. Singh A, Ramachandran SK, Gumpu MB et al (2021) Titanium dioxide doped hydroxyapatite incorporated photocatalytic membranes for the degradation of chloramphenicol antibiotic in water. J Chem Technol Biotechnol 96:1057–1066. https://doi.org/10.1002/jctb.6617

    Article  CAS  Google Scholar 

  6. Younis S, Bhatti HN, Bajwa SZ, et al (2023) Photodegradation of direct violet 51 dye using Bi2 MoO6 /GO nanoflakes as promising solar light-driven photocatalyst. Proceedings of the Pakistan Academy of Sciences: Part B 60:113–124. https://doi.org/10.53560/PPASB(60-1)796

  7. Thakur M, Sharma A, Kumar A et al (2023) Bio-synthesis of lead oxide nanoparticles using Chinese mahogany plant extract (CMPE@LO) for photocatalytic and antimicrobial activities. Bionanoscience 13:1896–1910. https://doi.org/10.1007/s12668-023-01147-5

    Article  Google Scholar 

  8. Kumar A, Sharma G, Thakur M, Pathania D (2019) Sol–gel synthesis of polyacrylamide-stannic arsenate nanocomposite ion exchanger: binary separations and enhanced photo-catalytic activity. SN Appl Sci 1:862. https://doi.org/10.1007/s42452-019-0905-6

    Article  CAS  Google Scholar 

  9. Sharma A, Thakur M, Kumar A et al (2023) Efficient photodegradation of fast sulphon black and crystal violet dyes from water systems using locust bean gum (LBG)-encapsulated zirconium-based nanoparticles and antibacterial activity. Nanotechnology for Environmental Engineering 8:859–877. https://doi.org/10.1007/s41204-023-00341-w

    Article  CAS  Google Scholar 

  10. Wang W, Lv B, Tao F (2023) NiO/g-C3N4 composite for enhanced photocatalytic properties in the wastewater treatment. Environ Sci Pollut Res 30:25620–25634. https://doi.org/10.1007/s11356-022-24121-2

    Article  CAS  Google Scholar 

  11. Al KM, Chakrabortty D (2022) Polyaniline (PANI) grafted hierarchical heterostructure nanocomposites for photocatalytic degradation of organic pollutants in waste water: a review. Surfaces and Interfaces 31:102079. https://doi.org/10.1016/j.surfin.2022.102079

    Article  CAS  Google Scholar 

  12. Sumathi M, Prakasam A, Anbarasan PM (2019) Fabrication of hexagonal disc shaped nanoparticles g-C3N4/NiO heterostructured nanocomposites for efficient visible light photocatalytic performance. J Clust Sci. https://doi.org/10.1007/s10876-019-01535-6

    Article  Google Scholar 

  13. Fatimah I, Sulistyowati RZ, Wijayana A, et al (2023) Z-scheme NiO/g-C3N4 nanocomposites prepared using phyto-mediated nickel nanoparticles for the efficient photocatalytic degradation. Heliyon 9. https://doi.org/10.1016/j.heliyon.2023.e16232

  14. Ismael M (2023) Facile synthesis of NiO-loaded g-C3N4 heterojunction photocatalyst for efficient photocatalytic degradation of 4-nitrophenol under visible light irradiation. J Photochem Photobiol A Chem 439. https://doi.org/10.1016/j.jphotochem.2023.114576

  15. Wen J, Xie J, Chen X, Li X (2017) A review on g-C 3 N 4 -based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  16. Kausor M Al, Chakrabortty D (2022) Carbon nitride photocatalysts for water treatment and purification. In: Nanostructured Carbon Nitrides for Sustainable Energy and Environmental Applications. Elsevier, pp 137–174

  17. Mamba G, Mishra AK (2016) Graphitic carbon nitride (g-C 3 N 4) nanocomposites: a new and exciting generation of visible light driven photocatalysts for environmental pollution remediation. Appl Catal B 198:347–377. https://doi.org/10.1016/j.apcatb.2016.05.052

    Article  CAS  Google Scholar 

  18. Devi S, Kumari S, Sharma A et al (2024) Boosting the photocatalytic activity of g-C3N4 via loading bio-synthesized Ag0 nanoparticles and imidazole modification for the degradation and mineralization of fluconazole. Environ Sci Pollut Res 31:15851–15871. https://doi.org/10.1007/s11356-024-31834-z

    Article  CAS  Google Scholar 

  19. Ding J, Lu S, Shen L, et al (2020) Enhanced photocatalytic reduction for the dechlorination of 2-chlorodibenzo-p-dioxin by high-performance g-C3N4/NiO heterojunction composites under ultraviolet-visible light illumination. J Hazard Mater 384. https://doi.org/10.1016/j.jhazmat.2019.121255

  20. Chen HY, Qiu LG, Xiao JD et al (2014) Inorganic-organic hybrid NiO-g-C3N4 photocatalyst for efficient methylene blue degradation using visible light. RSC Adv 4:22491–22496. https://doi.org/10.1039/c4ra01519c

    Article  CAS  Google Scholar 

  21. Karimi MA, Atashkadi M, Ranjbar M, Habibi-Yangjeh A (2020) Novel visible-light-driven photocatalyst of NiO/Cd/g-C3N4 for enhanced degradation of methylene blue. Arab J Chem 13:5810–5820. https://doi.org/10.1016/j.arabjc.2020.04.018

    Article  CAS  Google Scholar 

  22. Selvarajan S, Suganthi A, Rajarajan M (2018) Fabrication of g-C3N4/NiO heterostructured nanocomposite modified glassy carbon electrode for quercetin biosensor. Ultrason Sonochem 41:651–660. https://doi.org/10.1016/j.ultsonch.2017.10.032

    Article  CAS  PubMed  Google Scholar 

  23. Trabelsi ABG, Essam DH, Alkallas F et al (2022) Petal-like NiS-NiO/G-C3N4 nanocomposite for high-performance symmetric supercapacitor. Micromachines (Basel) 13:2134. https://doi.org/10.3390/mi13122134

    Article  PubMed  Google Scholar 

  24. Xu X, Li Y, Zhang G et al (2019) NiO-NiFe2O4-rGO magnetic nanomaterials for activated peroxymonosulfate degradation of rhodamine B. Water (Basel) 11:384. https://doi.org/10.3390/w11020384

    Article  CAS  Google Scholar 

  25. George G, Anandhan S (2014) Glass fiber–supported NiO nanofiber webs for reduction of CO and hydrocarbon emissions from diesel engine exhaust. J Mater Res 29:2451–2465. https://doi.org/10.1557/jmr.2014.233

    Article  Google Scholar 

  26. Huang W, Ding S, Chen Y et al (2017) 3D NiO hollow sphere/reduced graphene oxide composite for high-performance glucose biosensor. Sci Rep 7:5220. https://doi.org/10.1038/s41598-017-05528-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jayababu N, Poloju M, Shruthi J, Reddy MVR (2019) NiO decorated CeO 2 nanostructures as room temperature isopropanol gas sensors. RSC Adv 9:13765–13775. https://doi.org/10.1039/C9RA00441F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng JH, Zhang RM, Wang XG, Yu PF (2018) Synthesizing a flower-like NiO and ZnO composite for supercapacitor applications. Res Chem Intermed 44:5569–5582. https://doi.org/10.1007/s11164-018-3441-x

    Article  CAS  Google Scholar 

  29. Tan L, Xu J, Zhang X et al (2015) Synthesis of g-C 3 N 4 /CeO 2 nanocomposites with improved catalytic activity on the thermal decomposition of ammonium perchlorate. Appl Surf Sci 356:447–453. https://doi.org/10.1016/j.apsusc.2015.08.078

    Article  CAS  Google Scholar 

  30. Mary Rajaitha P, Shamsa K, Murugan C et al (2020) Graphitic carbon nitride nanoplatelets incorporated titania based type-II heterostructure and its enhanced performance in photoelectrocatalytic water splitting. SN Appl Sci 2:572. https://doi.org/10.1007/s42452-020-2190-9

    Article  CAS  Google Scholar 

  31. Kavinkumar V, Verma A, Masilamani S et al (2019) Investigation of the structural, optical and crystallographic properties of Bi2WO6/Ag plasmonic hybrids and their photocatalytic and electron transfer characteristics. Dalton Trans 48:10235–10250. https://doi.org/10.1039/c9dt01807g

    Article  CAS  PubMed  Google Scholar 

  32. Jabbar ZH, Okab AA, Graimed BH et al (2023) Fabrication of g-C3N4 nanosheets immobilized Bi2S3/Ag2WO4 nanorods for photocatalytic disinfection of Staphylococcus aureus cells in wastewater: Dual S-scheme charge separation pathway. J Photochem Photobiol A Chem 438:114556. https://doi.org/10.1016/j.jphotochem.2023.114556

    Article  CAS  Google Scholar 

  33. Okab AA, Alwared AI (2023) A dual S-scheme g-C3N4/Fe3O4/Bi2WO6/Bi2S3 heterojunction for improved photocatalytic decomposition of methylene blue: proposed mechanism, and stability studies. Mater Sci Semicond Process 153:107196. https://doi.org/10.1016/j.mssp.2022.107196

    Article  CAS  Google Scholar 

  34. Jabbar ZH, Graimed BH, Okab AA et al (2024) Preparation of magnetic Fe3O4/g-C3N4 nanosheets immobilized with hierarchal Bi2WO6 for boosted photocatalytic reaction towards antibiotics in aqueous solution: S-type charge migration route. Diam Relat Mater 142:110817. https://doi.org/10.1016/j.diamond.2024.110817

    Article  CAS  Google Scholar 

  35. Sumathi M, Prakasam A, Anbarasan PM (2019) Fabrication of hexagonal disc shaped nanoparticles g-C3N4/NiO heterostructured nanocomposites for efficient visible light photocatalytic performance. J Clust Sci 30:757–766. https://doi.org/10.1007/s10876-019-01535-6

    Article  CAS  Google Scholar 

  36. Far H, Hamici M, Brihi N et al (2022) High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. J Market Res 19:1944–1960. https://doi.org/10.1016/j.jmrt.2022.05.159

    Article  CAS  Google Scholar 

  37. Gupta VK, Fakhri A, Agarwal S et al (2017) Synthesis and characterization of MnO 2 /NiO nanocomposites for photocatalysis of tetracycline antibiotic and modification with guanidine for carriers of caffeic acid phenethyl ester-an anticancer drug. J Photochem Photobiol B 174:235–242. https://doi.org/10.1016/j.jphotobiol.2017.08.006

    Article  CAS  PubMed  Google Scholar 

  38. Honarmand M, Naeimi A, Rezakhani MS, Chaji MA (2022) Ni/NiO doped chitosan-cellulose based on the wastes of barley and shrimp for degradation of ciprofloxacin antibiotic. J Market Res 18:4060–4074. https://doi.org/10.1016/j.jmrt.2022.04.046

    Article  CAS  Google Scholar 

  39. Paul D, Maiti S, Sethi DP, Neogi S (2021) Bi-functional NiO-ZnO nanocomposite: synthesis, characterization, antibacterial and photo assisted degradation study. Adv Powder Technol 32:131–143. https://doi.org/10.1016/j.apt.2020.11.022

    Article  CAS  Google Scholar 

  40. Sadhukhan S, Bhattacharyya A, Rana D et al (2020) Synthesis of RGO/NiO nanocomposites adopting a green approach and its photocatalytic and antibacterial properties. Mater Chem Phys 247:122906. https://doi.org/10.1016/j.matchemphys.2020.122906

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Dr. Mohd Afzal extends his appreciation to Researchers Supporting Project number (RSPD2024R979), King Saud University, Riyadh, Saudi Arabia, for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

K.S. Balamurugan: conceptualization, investigation, methodology, data curation, writing—original draft.

V. Rohini: investigation, writing and editing.

Vasudeva Reddy Minnam Reddy: investigation, data curation.

Woo Kyoung Kim: investigation, data curation.

Mohd Afzal: data curation, formal analysis, funding acquisition.

Corresponding authors

Correspondence to K. S. Balamurugan, V. Rohini, Vasudeva Reddy Minnam Reddy or Woo Kyoung Kim.

Ethics declarations

Declarations

We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Competing interests

The authors declare no competing interests.

Research involving human and animal participants

There is no human tissue being used in the experiment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balamurugan, K.S., Rohini, V., Minnam Reddy, V. et al. Effective photocatalytic degradation of antibiotic chloramphenicol and anionic direct violet 51 dye using g-C3N4 embedded NiO nanocomposite. Ionics (2024). https://doi.org/10.1007/s11581-024-05533-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11581-024-05533-1

Keywords

Navigation