Skip to main content
Log in

An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Squaraine dyes have attracted significant attention in many areas of daily life from biomedical imaging to semiconducting materials. Moreover, these dyes are used as photoactive materials in the field of solar cells. In the present study, we investigated the structural, electronic, photophysical, and charge transport properties of six benzothiazole-based squaraine dyes (Cis-SQ1–Cis-SQ3 and Trans-SQ1–Trans-SQ3). The effect of electron donating (−OCH3) and electron withdrawing (−COOH) groups was investigated intensively. Ground state geometry and frequency calculations were performed by applying density functional theory (DFT) at B3LYP/6-31G** level of theory. Absorption spectra were computed in chloroform at the time-dependent DFT/B3LYP/6-31G** level of theory. The driving force of electron injection (ΔG inject), relative driving force of electron injection (ΔG r inject), electronic coupling constants (|VRP|) and light harvesting efficiency (LHE) of all six compounds were calculated and compared with previously studied sensitizers. The ΔG inject, ΔG r inject and |VRP| of all six compounds revealed that these sensitizers would be efficient dye-sensitized solar cell materials. Cis/Trans-SQ3 exhibited superior LHE as compared to other derivatives. The Cis/Trans geometric effect was studied and discussed with regard to electro-optical and charge transport properties.

Benzothiazole-based squarainedyes as efficient dye-sensitized solar cell materials

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Goodenough JB Abruña HD, Buchanan MV (2007) Basic research needs for electrical energy storage. Report of the Basic Energy Sciences Workshop on Electrical Energy Storage. US Department of Energy/Basic Energy Sciences (DOE/BES), Washington DC. http://science.energy.gov/~/media/bes/pdf/reports/files/ees_rpt.pdf

  2. Lan Y-K, Huang C-I (2008) J Phys Chem B 112:14857–14862. doi:10.1021/jp806967x

    Article  CAS  Google Scholar 

  3. Weitz RT, Amsharov K, Zschieschang U et al (2008) J Am Chem Soc 130:4637–4645. doi:10.1021/ja074675e

    Article  CAS  Google Scholar 

  4. Newman CR, Frisbie CD, da Silva Filho DA, Brédas J-L, Ewbank PC, Mann KR (2004) Chem Mater 16:4436–4451. doi:10.1021/cm049391x

    Article  CAS  Google Scholar 

  5. Zaumseil J, Sirringhaus H (2007) Chem Rev 107:1296–1323. doi:10.1021/cr0501543

    Article  CAS  Google Scholar 

  6. Chen H-Y, Chao I (2005) Chem Phys Lett 401:539–545. doi:10.1016/j.cplett.2004.11.125

    Article  CAS  Google Scholar 

  7. Escobedo JO, Rusin O, Lim S, Strongin RM (2010) Curr Opin Chem Biol 14:64–70. doi:10.1016/j.cbpa.2009.10.022

    Article  CAS  Google Scholar 

  8. Beverina L, Salice P (2010) Eur J Org Chem 2010:1207–1225. doi:10.1002/ejoc.200901297

    Article  Google Scholar 

  9. Oswald B, Patsenker L, Duschl J, Szmacinski H, Wolfbeis OS, Terpetschnig E (1999) Bioconjugate Chem 10:925–931. doi:10.1021/bc9801023

    Article  CAS  Google Scholar 

  10. Tatsuo Mori H-GK, Teruyoshi M, Duck-Chool L (2001) Jpn J Appl Phys 40:5346. doi:10.1143/JJAP.40.5346

    Article  Google Scholar 

  11. Chen G, Sasabe H, Sasaki Y et al (2014) Chem Mater 26:1356–1364. doi:10.1021/cm4034929

    Article  CAS  Google Scholar 

  12. Silvestri F, Irwin MD, Beverina L, Facchetti A, Pagani GA, Marks TJ (2008) J Am Chem Soc 130:17640–17641. doi:10.1021/ja8067879

    Article  CAS  Google Scholar 

  13. Bagnis D, Beverina L, Huang H et al (2010) J Am Chem Soc 132:4074–4075. doi:10.1021/ja100520q

    Article  CAS  Google Scholar 

  14. Irfan A, Cui R, Zhang J (2009) Theor Chem Acc 122:275–281. doi:10.1007/s00214-009-0506-3

    Article  CAS  Google Scholar 

  15. Torruellas WE, Neher D, Zanoni R, Stegeman GI, Kajzar F, Leclerc M (1990) Chem Phys Lett 175:11–16. doi:10.1016/0009-2614(90)85510-J

    Article  CAS  Google Scholar 

  16. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML (2006) Nature 442:904–907. doi:10.1038/nature05037

    Article  CAS  Google Scholar 

  17. Yen Y-S, Chou H-H, Chen Y-C, Hsu C-Y, Lin JT (2012) J Mater Chem 22:8734–8747. doi:10.1039/c2jm30362k

    Article  CAS  Google Scholar 

  18. Fu Y-T, da Silva Filho DA, Sini G et al (2014) Adv Funct Mater 24:3790–3798. doi:10.1002/adfm.201303941

    Article  CAS  Google Scholar 

  19. Ruankham P, Macaraig L, Sagawa T, Nakazumi H, Yoshikawa S (2011) J Phys Chem C 115:23809–23816. doi:10.1021/jp204325y

    Article  CAS  Google Scholar 

  20. Ooyama Y, Harima Y (2009) Eur J Org Chem 2009:2903–2934. doi:10.1002/ejoc.200900236

    Article  Google Scholar 

  21. Mishra A, Fischer MKR, Bäuerle P (2009) Angew Chem Int Ed 48:2474–2499. doi:10.1002/anie.200804709

    Article  CAS  Google Scholar 

  22. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) Spectrochim Acta A Mol Biomol Spectrosc 91:239–243

    Article  CAS  Google Scholar 

  23. Al-Sehemi AG, Irfan A, Asiri AM, Ammar YA (2012) J Mol Struct 1019:130–134. doi:10.1016/j.molstruc.2012.02.035

    Article  CAS  Google Scholar 

  24. Irfan A, Hina N, Al-Sehemi A, Asiri A (2012) J Mol Model 18:4199–4207. doi:10.1007/s00894-012-1421-4

    Article  CAS  Google Scholar 

  25. Al-Sehemi A, Irfan A, Asiri A (2012) Theor Chem Acc 131:1–10. doi:10.1007/s00214-012-1199-6

    Article  CAS  Google Scholar 

  26. Irfan A, Al-Sehemi A (2012) J Mol Model 18:4893–4900. doi:10.1007/s00894-012-1488-y

    Article  CAS  Google Scholar 

  27. Irfan A, Jin R, Al-Sehemi AG, Asiri AM (2013) Spectrochim Acta A Mol Biomol Spectrosc 110:60–66. doi:10.1016/j.saa.2013.02.045

    Article  CAS  Google Scholar 

  28. Preat J, Jacquemin D, Perpète EA (2010) Environ Sci Technol 44:5666–5671. doi:10.1021/es100920j

    Article  CAS  Google Scholar 

  29. Liu D, Fessenden RW, Hug GL, Kamat PV (1997) J Phys Chem B 101:2583–2590. doi:10.1021/jp962695p

    Article  CAS  Google Scholar 

  30. Burfeindt B, Hannappel T, Storck W, Willig F (1996) J Phys Chem 100:16463–16465. doi:10.1021/jp9622905

    Article  CAS  Google Scholar 

  31. Sayama K, Tsukagoshi S, Hara K et al (2002) J Phys Chem B 106:1363–1371. doi:10.1021/jp0129380

    Article  CAS  Google Scholar 

  32. Sánchez-Carrera RS, Coropceanu V, da Silva Filho DA et al (2006) J Phys Chem B 110:18904–18911. doi:10.1021/jp057462p

    Article  Google Scholar 

  33. Irfan A, Al-Sehemi AG, Muhammad S (2014) Synth Met 190:27–33. doi:10.1016/j.synthmet.2014.01.017

    Article  CAS  Google Scholar 

  34. Irfan A, Al-Sehemi AG, Al-Assiri MS (2014) Comp Theor Chem 1031:76–82. doi:10.1016/j.comptc.2013.12.027

    Article  CAS  Google Scholar 

  35. Irfan A, Al-Sehemi AG, Al-Assiri MS (2014) J Fluorine Chem 157:52–57. doi:10.1016/j.jfluchem.2013.11.001

    Article  CAS  Google Scholar 

  36. Irfan A (2014) Comp Mater Sci 81:488–492. doi:10.1016/j.commatsci.2013.09.003

    Article  CAS  Google Scholar 

  37. Irfan A, Al-Sehemi AG, Al-Assiri MS (2013) J Mol Graphics Model 44:168–176. doi:10.1016/j.jmgm.2013.06.003

    Article  CAS  Google Scholar 

  38. Irfan A, Al-Sehemi AG, Kalam A (2013) J Mol Struct 1049:198–204. doi:10.1016/j.molstruc.2013.06.023

    Article  CAS  Google Scholar 

  39. Irfan A (2014) Optik Intern J Light Elect Optics 125:4825–4830. doi:10.1016/j.ijleo.2014.04.050

    Article  CAS  Google Scholar 

  40. Guillaumont D, Nakamura S (2000) Dyes Pigm 46:85–92. doi:10.1016/S0143-7208(00)00030-9

    Article  CAS  Google Scholar 

  41. Zhang C, Liang W, Chen H, Chen Y, Wei Z, Wu Y (2008) J Mol Struct (THEOCHEM) 862:98–104. doi:10.1016/j.theochem.2008.04.035

    Article  CAS  Google Scholar 

  42. Irfan A, Cui R, Zhang J, Hao L (2009) Chem Phys 364:39–45. doi:10.1016/j.chemphys.2009.08.009

    Article  CAS  Google Scholar 

  43. Al-Sehemi A, Irfan A, Asiri A (2012) Theor Chem Acc 131:1199–1208. doi:10.1007/s00214-012-1199-6

    Article  Google Scholar 

  44. Al-Sehemi A, Al-Melfi M, Irfan A (2013) Struct Chem 24:499–506. doi:10.1007/s11224-012-0103-2

    Article  CAS  Google Scholar 

  45. Jin R, Irfan A (2012) Comp Theor Chem 986:93–98. doi:10.1016/j.comptc.2012.02.018

    Article  CAS  Google Scholar 

  46. Al-Sehemi AG, Irfan A, El-Agrody AM (2012) J Mol Struct 1018:171–175. doi:10.1016/j.molstruc.2012.03.018

    Article  CAS  Google Scholar 

  47. Irfan A, Ijaz F, Al-Sehemi A, Asiri A (2012) J Comput Electron 11:374–384. doi:10.1007/s10825-012-0417-8

    Article  CAS  Google Scholar 

  48. Preat J, Michaux C, Jacquemin D, Perpète EA (2009) J Phys Chem C 113:16821–16833. doi:10.1021/jp904946a

    Article  CAS  Google Scholar 

  49. Huong VTT, Nguyen HT, Tai TB, Nguyen MT (2013) J Phys Chem C 117:10175–10184. doi:10.1021/jp401191a

    Article  CAS  Google Scholar 

  50. Scalmani G, Frisch MJ, Mennucci B, Tomasi J, Cammi R, Barone V (2006) J Chem Phys 124:094107–094115

    Article  Google Scholar 

  51. Matthews D, Infelta P, Grätzel M (1996) Sol Energy Mater Sol Cells 44:119–155. doi:10.1016/0927-0248(96)00036-0

    Article  CAS  Google Scholar 

  52. Pourtois G, Beljonne D, Cornil J, Ratner MA, Brédas JL (2002) J Am Chem Soc 124:4436–4447. doi:10.1021/ja017150+

    Article  CAS  Google Scholar 

  53. Hsu C-P (2009) Acc Chem Res 42:509–518. doi:10.1021/ar800153f

    Article  CAS  Google Scholar 

  54. Marcus RA (1993) Rev Mod Phys 65:599–610

    Article  CAS  Google Scholar 

  55. Hilgendorff M, Sundström V (1998) J Phys Chem B 102:10505–10514. doi:10.1021/jp982210s

    Article  CAS  Google Scholar 

  56. Zhigang Shuai LW, Song C (2012) Theory of charge transport in carbon electronic materials. Springer, New York

    Book  Google Scholar 

  57. Asbury J, Wang Y-Q, Hao E, Ghosh H, Lian T (2001) Res Chem Intermed 27:393–406. doi:10.1163/156856701104202255

    Article  CAS  Google Scholar 

  58. Katoh R, Furube A, Yoshihara T et al (2004) J Phys Chem B 108:4818–4822. doi:10.1021/jp031260g

    Article  CAS  Google Scholar 

  59. Hagfeldt A, Graetzel M (1995) Chem Rev 95:49–68. doi:10.1021/cr00033a003

    Article  CAS  Google Scholar 

  60. Barbara PF, Meyer TJ, Ratner MA (1996) J Phys Chem 100:13148–13168. doi:10.1021/jp9605663

    Article  CAS  Google Scholar 

  61. De Angelis F, SFaAS (2008) Nanotechnology 19:424002–424008. doi:10.1088/0957-4484/19/42/424002

    Article  Google Scholar 

  62. Preat J (2010) J Phys Chem C 114:16716–16725. doi:10.1021/jp1050035

    Article  CAS  Google Scholar 

  63. Benkö G, Kallioinen J, Korppi-Tommola JEI, Yartsev AP, Sundström V (2001) J Am Chem Soc 124:489–493. doi:10.1021/ja016561n

    Article  Google Scholar 

  64. Iwai S, Hara K, Murata S, Katoh R, Sugihara H, Arakawa H (2000) J Chem Phys 113:3366–3373

    Article  CAS  Google Scholar 

  65. Nalwa HS (2001) Handbook of advanced electronic and photonic materials and devices. Academic, San Diego

    Google Scholar 

  66. Harris DC, Bertolucci MD (1998) Symmetry and spectroscopy. Dover, New York

  67. Casida ME (1995) Time-dependent density functional response theories of molecules. In: Chong DP (ed) Recent advances in density functional methods, part 1. World Scientific, Singapore

  68. Zhang J, Kan Y-H, Li H-B et al (2013) J Mol Model 19:1597–1604. doi:10.1007/s00894-012-1719-2

    Article  CAS  Google Scholar 

  69. Irfan A, Cui R, Zhang J, Hao L (2009) Chem Phys 364:39–45

    Article  CAS  Google Scholar 

  70. Robertson N (2006) Angew Chem Int Ed 45:2338–2345. doi:10.1002/anie.200503083

    Article  CAS  Google Scholar 

  71. Irfan A (2013) Mater Chem Phys 142:238–247. doi:10.1016/j.matchemphys.2013.07.011

    Article  CAS  Google Scholar 

  72. Zhou Y, Eck M, Veit C et al (2011) Sol Energy Mater Sol Cells 95:1232–1237. doi:10.1016/j.solmat.2010.12.041

    Article  CAS  Google Scholar 

  73. Celik D, Krueger M, Veit C et al (2012) Sol Energy Mater Sol Cells 98:433–440. doi:10.1016/j.solmat.2011.11.049

    Article  CAS  Google Scholar 

  74. Al-Sehemi AG, Irfan A, Al-Melfi MAM, Al-Ghamdi AA, Shalaan E (2014) J Photochem Photobiol A Chem 292:1–9. doi:10.1016/j.jphotochem.2014.07.003

    Article  CAS  Google Scholar 

  75. Al-Sehemi AG, Irfan A, Fouda AM (2013) Spectrochim Acta A Mol Biomol Spectrosc 111:223–229. doi:10.1016/j.saa.2013.04.010

    Article  CAS  Google Scholar 

  76. Sang-aroon W, Saekow S, Amornkitbamrung V (2012) J Photochem Photobiol A Chem 236:35–40. doi:10.1016/j.jphotochem.2012.03.014

    Article  CAS  Google Scholar 

  77. Brabec CJ, Cravino A, Meissner D et al (2001) Adv Funct Mater 11:374–380. doi:10.1002/1616-3028(200110)11:5<374::aid-adfm374>3.0.co;2-w

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This Project was funded by King Abdulaziz City for Science and Technology (KACST) through the National Science, Technology and Innovation Plan (NSTIP) under grant number 8-ENE198-3. The authors therefore acknowledge with thanks KACST for support for Scientific Research. Also, the authors are thankful to the Deanship of Scientific Research (DSR), King Abdulaziz University for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Irfan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Fahdan, N.S., Asiri, A.M., Irfan, A. et al. An electro-optical and electron injection study of benzothiazole-based squaraine dyes as efficient dye-sensitized solar cell materials: a first principles study. J Mol Model 20, 2517 (2014). https://doi.org/10.1007/s00894-014-2517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2517-9

Keywords

Navigation