Skip to main content
Log in

Structural engineering of ZnO–MgO intermediates for functional ceramics

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

ZnO–MgO nanopowders containing engineered structural defects were synthesized by modified Pechini method. The crystal structure, morphology and the properties of materials were studied by XRD and SEM analysis, FTIR and luminescence spectroscopy. The influence of the type and concentration of different organic modifying compounds on the crystal structure and properties of synthesized materials has been investigated. Average size of crystals, lattice parameters and luminescence spectra of defects were compared for samples with different content of citric acid. The change in citric acid content has no influence on the morphology of synthesized powders. It was found that the replacement of Zn2+ ions by Mg2+ in hexagonal ZnO crystals leads to the deformation of crystal lattices and to the decrease in their cell volume. This Mg2+ embedding is accompanied by the displacement of Zn2+ ions into the interstitials structural positions and the appearance of characteristic emission peaks of these structural defects in luminescence spectra. Experiments show that prepared ZnO–MgO nanocomposites demonstrate high photocatalytic activity. Obtained materials can be used as intermediates for the fabrication of functional ceramics, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Sakthivel, B. Neppolian, M.V. Shankar, Sol. Energy Mater. Sol. Cells 77, 65 (2003)

    Article  CAS  Google Scholar 

  2. R. Saravanan, N. Karthikeyan, S. Govindan, Adv. Mater. Res. 584, 381 (2012)

    Article  CAS  Google Scholar 

  3. A.A. Shelemanov, R.K. Nuryev, S.K. Evstropiev, V.M. Kiselev, N.V. Nikonorov, Opt. Spectrosc. 129, 1300 (2021)

    Article  CAS  Google Scholar 

  4. Z. Cheng, S. Zhao, L. Han, Nanoscale 10, 6892 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. S.K. Evstropiev, A.V. Karavaeva, M.A. Petrova, N.V. Nikonorov, V.N. Vasilyev, L.L. Lesnykh, K.V. Dukelskii, Mater. Today Commun. 21, 100628 (2019)

    Article  CAS  Google Scholar 

  6. J.-C. Sin, S.-M. Lam, I. Satoshi, K.-T. Lee, A.R. Mohamed, Appl. Catal. B 258, 148 (2014)

    Google Scholar 

  7. I.S. Boltenkov, E.V. Kolobkova, S.K. Evstropiev, J. Photochem. Photobiol. A Chem. 367, 458 (2018)

    Article  CAS  Google Scholar 

  8. H. Zhu, C.-X. Shan, B. Yao, B.-H. Li, J.-Y. Zhang, Z.-Z. Zhang, D.-X. Zhao, D.-Z. Shen, X.-W. Fan, Y.-M. Lu, Z.-K. Tang, Adv. Mater. 21, 1613 (2009)

    Article  CAS  Google Scholar 

  9. S.K. Evstropiev, K.V. Dukelskii, A.V. Karavaeva, V.N. Vasilyev, E.V. Kolobkova, N.V. Nikonorov, K.S. Evstropyev, J. Mater. Sci.: Mater. Med. 28, 102 (2017)

    CAS  Google Scholar 

  10. H. Morkoş, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, (WILEY-VCH Verlag GmbH&Co., KGaA, Weinheim, 2009), 76 pages. ISBN:978-3-527-40813-9

  11. S.K. Evstropiev, L.V. Lesnykh, A.V. Karavaeva, N.V. Nikonorov, K.V. Oreshkina, LYu. Mironov, SYu. Maslennikov, E.V. Kolobkova, I.V. Bagrov, Chem. Eng. Process. Process Intensif. 142, 107587 (2019)

    Article  CAS  Google Scholar 

  12. Y. Liu, Y. Wang, W.Y. Zhen, Y.H. Wang, S.T. Zhang, Y. Zhao, S.Y. Song, Z.J. Wu, H.J. Zhang, Biomaterials 251, 120075 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. A. Amir, A. Nawaz, A. Ibrahim, M.N. Ashiq, M.Q. Saeed, M. Hamza, H.M.Z. Rasheed, B. Islam, Int. J. Appl. Ceram. Technol. 18, 1417 (2021)

    Article  CAS  Google Scholar 

  14. A. Sierra-Fernandez, S.C. De la Rosa-García, L.S. Gomez-Villaba, S. Gómez-Cornelio, M.E. Rabanal, P. Quintana, A.C.S. Appl, Mater. Interfaces 9, 24873 (2017)

    Article  CAS  Google Scholar 

  15. A. Rafiq, M. Ikram, S. Ali, Ind. Eng. Chem. 97, 111 (2021)

    Article  CAS  Google Scholar 

  16. C.R. Esterkin, A.C. Negro, O.M. Alfano, AIChE J. 51, 2298 (2005)

    Article  CAS  Google Scholar 

  17. M. Zhang, G. Sheng, J. Fu, Mater. Lett. 59, 3641 (2005)

    Article  CAS  Google Scholar 

  18. K. Abdullah, S. Awad, J. Zaraket, Energy Procedia 119, 565 (2017)

    Article  Google Scholar 

  19. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34, 565 (2012)

    Article  Google Scholar 

  20. A. Naeimi, R. Nejat, Iran. J. Chem. Chem. Eng. 41, 1 (2022)

    Google Scholar 

  21. N.U. Saqib, R. Adnan, I. Shah, Iran. J. Chem. Chem. Eng. 40, 4 (2021)

    Google Scholar 

  22. S. Piramoon, P. Aberoomand Azar, M. Saber Tehrani, S. Mohamadi Azar, Iran. J. Chem. Chem. Eng. 40, 1541 (2021)

    CAS  Google Scholar 

  23. D. Domyati, Eur. Chem. Bull. 11, 1 (2022)

    CAS  Google Scholar 

  24. M. Mansouri, M. Nademi, M. Ebrahim Olya, H. Lotfi, J. Chem. Health Risks 7, 19 (2017)

    CAS  Google Scholar 

  25. T.N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, G. Nagaraju, D. Kumar, S. Sarakar, B.S. Anandakumar, G.T. Chandrappa, V. Reddy, J. Dupont, Mater. Sci. Semicond. Process. 26, 7 (2014)

    Article  CAS  Google Scholar 

  26. P.A. Rodnyi, K.A. Chernenko, I.D. Venevtsev, Opt. Spectr. 125, 372 (2018)

    Article  CAS  Google Scholar 

  27. J.P. Wang, Z.Y. Wang, B.B. Huang, Y.D. Ma, Y.Y. Liu, X.Y. Zhang, Y. Dai, A.C.S. Appl, Mater. Interfaces 4, 4024 (2012)

    Article  CAS  Google Scholar 

  28. L. Zheng, M. Liu, H. Zhang, Z. Zheng, Z. Wang, H. Cheng, P. Wang, Y. Liu, B. Huang, Nanomaterials (Basel) 11, 2506 (2021)

    Article  CAS  Google Scholar 

  29. L.S. Liu, Z.X. Mei, A.H. Tang, A. Azarov, A. Kuznetsov, Q.K. Xue, X.L. Du, Phys. Rev. B 93, 235305 (2016)

    Article  Google Scholar 

  30. Z.G. Geng, X.D. Kong, W.W. Chen, H.Y. Su, Y. Liu, F. Cai, G.X. Wang, J. Zeng, Angew. Chem. Int. Ed. 57, 6054 (2018)

    Article  CAS  Google Scholar 

  31. D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao, R. Zong, Y. Zhu, J. Phys. Chem. C 118, 15300 (2014)

    Article  CAS  Google Scholar 

  32. A. Babapoor, Iran. J. Chem. Chem. Eng. 41, 37 (2022)

    CAS  Google Scholar 

  33. I. Ayoub, V. Kumar, R. Abolhassani, R. Sehgal, V. Sharma, R. Sehgal, H.C. Swart, Y.K. Mishra, Nanotechnol. Rev. 11, 575 (2022)

    Article  CAS  Google Scholar 

  34. T. Tian, L. Cheng, L. Zheng, J. Xing, H. Gu, S. Bernik, H. Zeng, W. Ruan, K. Zhao, G. Li, Acta Mater. 119, 136 (2016)

    Article  CAS  Google Scholar 

  35. V. Gurylev, T.P. Perng, J. Eur. Ceram. Soc. 41, 4977 (2021)

    Article  CAS  Google Scholar 

  36. Y. Qin, X.D. Wang, Z.L. Wang, Nature 451, 809 (2008)

    Article  CAS  PubMed  Google Scholar 

  37. D.M. Hofmann, D. Pfisterer, J. Sann, B.B. Meyer, R. Tena-Zaera, V. Munoz-sanjose, T. Frank, G. Pensl, Appl. Phys. A 88, 147 (2007)

    Article  CAS  Google Scholar 

  38. X.H. Lu, G.M. Wang, S.L. Xie, J.Y. Shi, W. Li, Y.X. Tong, Y. Li, Chem. Commun. 48, 7717 (2012)

    Article  CAS  Google Scholar 

  39. A.V. Pashkevich, A.K. Fedotov, E.N. Poddenezhny, L.A. Bliznyuk, J.A. Fedotova, N.A. Basov, A.A. Kharchanka, P. Zukowski, T.N. Koltunowicz, O.V. Korolik, V.V. Fedotova, J. Alloys Comp. 895, 162621 (2022)

    Article  CAS  Google Scholar 

  40. P. Pascariu Dorneanu, M. Homocianu, C. Cojocaru, P. Samoila, A. Airinei, M. Suchea, Appl. Surf. Sci. 476, 16 (2019)

    Article  Google Scholar 

  41. S.K. Evstropiev, I.P. Soshnikov, E.V. Kolobkova, K.S. Evstropyev, N.V. Nikonorov, A.I. Khrebtov, K.V. Dukelskii, K.P. Kotlyar, K.V. Oreshkina, A.V. Nashekin, Opt. Mater. 82, 81 (2018)

    Article  CAS  Google Scholar 

  42. S. Fujita, H. Tanaka, S. Fujita, J. Cryst. Growth 278, 264 (2005)

    Article  CAS  Google Scholar 

  43. A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev, Mater. Chem. Phys. 276, 125204 (2022)

    Article  CAS  Google Scholar 

  44. V.E. Etacheri, R. Roshan, V. Kumar, Mg-doped nanoparticles for efficient sunlight-driven photocatalysis. ACS Appl. Mater. Interfaces 4, 2717 (2012)

    Article  CAS  PubMed  Google Scholar 

  45. R.C. Bradt, S.L. Burkett, Ceram. Microstruct. Control At. Level 7, 339 (1998)

    Article  Google Scholar 

  46. A. Madathil, K. Vanaja, M. Jayaraj, Proc. SPIE Nanophotonic Mater. IV 6639, 66390J (2007)

    Google Scholar 

  47. S. Vishwanathan, S. Das, Environ. Sci. Pollut. Res. Int. 349 (2022)

  48. A. Moussaoui, D.V. Bulyga, S.K. Evstropiev, A.I. Ignatiev, N.V. Nikonorov, Y.F. Podruhin, R.V. Sadovnichii, Ceram. Int. 47, 34307 (2021)

    Article  CAS  Google Scholar 

  49. S. Ghorbani, R.S. Razavi, M.R. Loghman-Estarki, A. Alhaji, Ceram. Int. 43, 345 (2017)

    Article  CAS  Google Scholar 

  50. F.M. Bodaghabadi, M. Ramazani, M.R. Loghman-Estarki, A. Alhaji, M.Z. Habibabadi, Ceram. Int. 47, 14124 (2021)

    Article  Google Scholar 

  51. E. Rodrigues, M. Silva, W. Azevedo, Appl. Phys. A. 125, 504 (2019)

    Article  CAS  Google Scholar 

  52. H. Vahdat Vasei, S.M. Masoudpanah, J. Mater. Res. Technol. 11, 112 (2021)

    Article  Google Scholar 

  53. R. Ciriminna, F. Meneguzzo, R. Delisi, M. Pagliaro, Chem. Cent. J. 11, 22 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. A.L. Patterson, Phys. Rev. 56, 978 (1939)

    Article  CAS  Google Scholar 

  55. J. Pachiyappan, N. Gnanasundaram, G.L. Rao, Results Mater. 7, 100104 (2020)

    Article  Google Scholar 

  56. D. Zhang, Y. Lin, S. Song, P. Zhang, H. Mi, J. Theor. Comput. Chem. 17, 1850018 (2018)

    Article  CAS  Google Scholar 

  57. J. Zhang, L. Zhang, Chem. Phys. Lett. 365, 293 (2002)

    Article  Google Scholar 

  58. D. Das, P. Mondal, RSC Adv. 4, 35735 (2014)

    Article  CAS  Google Scholar 

  59. S. Vempati, J. Mitra, P. Dawson, Nano Res. Lett. 7, 470 (2012)

    Article  Google Scholar 

  60. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  CAS  Google Scholar 

  61. M.W. Lekota, K.M. Dimpe, P.N. Nomngongo, J. Anal. Sci. Technol. 10, 25 (2019)

    Article  Google Scholar 

  62. G. Xiong, U. Pal, J. Serrano, Phys. Stat. Sol. 3, 3577 (2006)

    CAS  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Science Foundation, according to the research project No. 20-19-00559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Bulyga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyga, D.V., Evstropiev, S.K. & Nashchekin, A.V. Structural engineering of ZnO–MgO intermediates for functional ceramics. Res Chem Intermed 48, 4785–4796 (2022). https://doi.org/10.1007/s11164-022-04836-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-022-04836-0

Keywords

Navigation