Skip to main content
Log in

ZnO nanoparticles with tunable bandgap obtained by modified Pechini method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (N–ZnO) obtained by the Pechini method and calcined using a closed clay container are the focus of the present work. The synthetic route includes a modification in the calcination process (modified Pechini method), that is, without the change in the calcination process. The modified calcination process carried out in a clay container allows for the tunability of the ZnO bandgap. To characterize the materials, X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV–visible (UV–Vis) spectroscopy have been performed. The analysis of UV–Vis absorption measurements allows us to conclude that the bandgap of N–ZnO can be tuned from 2.8 to 3.04 eV for ZnO–CC:400 and ZnO–CC:600 (samples of carbon-doped N–ZnO or C–N–ZnO), respectively, which are smaller than the ZnO bulk value of 3.37 eV. This gives rise to new possibilities of adaptation for the N–ZnO to new applications by shifting the bandgap from the UV to the visible region. The XRD and TEM measurements show that all samples are highly crystalline and have small grain sizes, confirming that the ethylene glycol seems to be a useful polymerizing agent for the preparation of C–N–ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.K. Mishra, H. Mishra, A. Ekielski, S. Talegaonkar, B. Vaydia, Zinc oxide nanoparticles: a promising nanomaterial for biomedical applications. Drug Discov. Today 22, 1825–1834 (2017)

    Article  Google Scholar 

  2. M. Hadiyan, A. Salehi, A. Koohi-Saadi, Sub-ppm acetone gas sensing properties off ree-standing ZnO nanorods. J. Electroceram. 1, 1–9 (2019)

    Google Scholar 

  3. J. Chang, H. Kuo, I. Leu, M. Hon, The effects of thickness and operation temperature on ZnO: Al thin film CO gas sensor. Sens. Actuators B Chem. 84, 258–264 (2002)

    Article  Google Scholar 

  4. Ü. Özgür, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoç, A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  5. S.A. Ansari, W. Khan, M. Chaman, A.H. Naqvi, Synthesis, structural and optical properties of Cr doped ZnO nanoparticles. Asian J. Chem. 23, 5622–5624 (2011)

    Google Scholar 

  6. A.A. Azab, E.E. Ateia, S.A. Esmail, Comparative study on the physical properties of transition metaldoped (Co, Ni, Fe, and Mn) ZnO nanoparticles. Appl. Phys. A 124, 1–10 (2018)

    Article  ADS  Google Scholar 

  7. Q. Fu, C. Ke, Y. Hu, Z. Zheng, T. Chen, Y. Xu, Al-doped ZnO varistors prepared by a two-step doping process. Adv. Appl. Ceram. 117, 1–6 (2018)

    Article  Google Scholar 

  8. G. Rodriguez-Gattorno, P. Santiago-Jacinto, L. Rendon-Vázquez, J. Németh, I. Dékány, D. Díaz, Novel synthesis pathway of ZnO nanoparticles from the spontaneous hydrolysis of zinc carboxylate salts. J. Phys. Chem. B 107, 12597–12604 (2003)

    Article  Google Scholar 

  9. V.A. Soares, A.F. Santos, D.M.S. Ribeiro, M.S. Silva, Study of DC conductivity in nanostructured ceramics of NiMn2O4 pure and doped with Cu and Zn. Int. J. Electroact. Mater. 6, 14–20 (2018)

    Google Scholar 

  10. J. Guo, J. Zhang, M. Zhu, D.X. Ju, X.Y. Xu, B.Q. Cao, Highperformance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B 199, 339–345 (2014)

    Article  Google Scholar 

  11. D. Zhao, X. Wan, H. Song, L.Y. Hao, Y.Y. Su, Y. Lv, Metal–organic frameworks (MOFs) combined with ZnO quantum dots as a fluorescente sensing platform for phosphate. Sens. Actuators B Chem. 197, 50–57 (2014)

    Article  Google Scholar 

  12. J. Huang, S. Liu, N. Yao, X.J. Xu, Optical properties of Eu3+, Dy3+ co-doped ZnO nanocrystals. J. Optoelectron. Lett. 10, 161–163 (2014)

    Article  ADS  Google Scholar 

  13. T. Singh, T. Lehnen, T. Leuning, D. Sahub, S. Mathura, Thickness dependence of optoelectronic properties in ALD grown ZnO thin films. J. Appl. Surf. Sci. 289, 27–32 (2014)

    Article  ADS  Google Scholar 

  14. L.L. Xing, Y.F. Hu, P.L. Wang, Y.Y. Zhao, Y.X. Nie, P. Deng, X.Y. Xue, Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal. Appl. Phys. Lett. 104, 1–5 (2014)

    Google Scholar 

  15. C.Q. Song, K. Yu, H.H. Yin, H. Fu, Z.L. Zhang, N. Zhang, Z.Q. Zhu, Highly efficient field emission properties of a novel layered VS2/ZnO nanocomposite and flexible VS2 nanosheet. J. Mater. Chem. C 2, 4196–4202 (2014)

    Article  Google Scholar 

  16. J. Yun, W. Qin, K. van Benthem, A.M. Thron, S. Kim, Y.H. Han, Nanovoids in dense hydroxyapatite ceramics after electric field assisted sintering. Adv. Appl. Ceram. 117, 1–7 (2018)

    Article  Google Scholar 

  17. M.S. Silva, S.T. Souza, D.V. Sampaio, J.C.A. Santos, E.J.S. Fonseca, R.S. Silva, Conductive atomic force microscopy characterization of PTCR-BaTiO3 laser-sintered ceramics. J. Eur. Ceram. Soc. 36, 1385–1389 (2016)

    Article  Google Scholar 

  18. Y.Q. Fu, J.K. Luo, X.Y. Du, A.J. Flewitt, Y. Li, G.H. Markx, A.J. Walton, W.I. Milne, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review. Sens. Actuators B Chem. 143, 606–619 (2010)

    Article  Google Scholar 

  19. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, Synthesis of ZnO nanoparticles by a novel surfactant assisted amine combustion method. Adv. Nanoparticles 02, 45–50 (2013)

    Article  Google Scholar 

  20. J. Lee, J.S. Choi, M. Yoon, Fabrication of ZnO nanoplates for visible light-induced imaging of living cells. J. Mater. Chem. B 2, 2311–2317 (2014)

    Article  Google Scholar 

  21. J.Y. Kim, S.Y. Jo, G.J. Sun, A. Katoch, S.W. Choi, S.S. Kim, Tailoring the surface area of ZnO nanorods for improved performance in glucose sensors. Sens. Actuators B Chem. 192, 216–220 (2014)

    Article  Google Scholar 

  22. M. Wang, B. Zhao, S.H. Xu, L. Lin, S.J. Liu, D.N. He, Synthesis of hierarchically structured ZnO nanomaterials via a supercritical assisted solvothermal process. Chem. Commun. 50, 930–932 (2014)

    Article  Google Scholar 

  23. S.K. Lim, S.H. Hong, S.H. Hwang, S.Y. Kim, H.W. Park, Characterization of Ga-doped ZnO nanorods synthesized via microemulsion method. J. Mater. Sci. Technol. 29, 39–43 (2013)

    Article  Google Scholar 

  24. Q.A.A. Aziz, S. Nor, S.Y. Pung, Z. Lockman, N.A. Hamzah, Y.L. Chan, Ex situ doping of ZnO nanorods by spray pyrolysis technique. Mater. Sci. Forum 756, 16–23 (2013)

    Article  Google Scholar 

  25. P.S. Shewale, G.L. Agawane, S.W. Shin, A.V. Moholka, J.Y. Lee, J.H. Kim, M.D. Uplane, Thickness dependent H2S sensing properties of nanocrystalline ZnO thin films derived by advanced spray pyrolysis. Sens. Actuators B Chem. 177, 695–702 (2013)

    Article  Google Scholar 

  26. W. Wen, J.M. Wu, Y.D. Wang, Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sens. Actuators B Chem. 184, 78–84 (2013)

    Article  Google Scholar 

  27. M.A. Ali, M.R. Idris, M.E. Quayum, Fabrication of ZnO nanoparticles by solution-combustion method for the photocatalytic degradation of organic dye. J. Nanostructure Chem. 3, 1–6 (2013)

    Article  Google Scholar 

  28. M. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same from a capacitor. U. S. Patent no. 3330697, 26 Aug. 1963, 11 Jul. 1967

  29. C.T. Chen, F.C. Hsu, S.W. Kuan, Y.F. Chen, The effect of C60 on the ZnO-nanorod surface in organic–inorganic hybrid photovoltaics. Sol. Energy Mater. Sol. Cells 95, 740–744 (2011)

    Article  Google Scholar 

  30. S. Ghasaban, M. Atai, M. Imani, Simple mass production of zinc oxide nanostructures via low-temperature hydrothermal synthesis. Mater. Res. Express 4, 1–7 (2017)

    Article  Google Scholar 

  31. S.S. Kulkarni, M.D. Shirtat, Optical and structural properties of zinc oxide nanoparticles. Int. J. Adv. Res. Phys. Sci. 2, 14–18 (2015)

    Google Scholar 

  32. L. Lilensten, Q. Fu, B.R. Wheaton, A.J. Credle, R.L. Stewart, J.T. Kholi, Kinetic study on lithium-aluminosilicate (LAS) glass-ceramics containing MgO and ZnO. Ceram. Int. 40, 11657–11661 (2014)

    Article  Google Scholar 

  33. G. Madhumitha, G. Elango, S.M. Roopan, Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl. Microbiol. Biotechnol. 100, 571–581 (2016)

    Article  Google Scholar 

  34. Y. Wang, N. Herron, Chemical effects on the optical properties of semiconductor particles. J. Phys. Chem. 91, 5005–5008 (1987)

    Article  Google Scholar 

  35. B. Cullity, Elements of X-ray Diffraction (Addision-Wesley, Reading, 1987), p. 294

    Google Scholar 

  36. S. Vives, E. Gaffet, C. Meunier, X-ray diffraction line profile analysis of iron ball milled powders. Mater. Sci. Eng. A 366, 229–238 (2004)

    Article  Google Scholar 

  37. A.C.B. Oliveira, D.M.S. Ribeiro, C.G.P. Moraes, R.S. Silva, N.S. Ferreira, M.S. Silva, Synthesis and characterization of nickel manganite ceramics by polymeric precursors method. Mater. Sci. Forum 881, 123–127 (2016)

    Article  Google Scholar 

  38. M.E.L. Sabino, D.M. Oliveira, V.D. Falcão, A.C. Bernardes-Silva, J.R.T. Branco, Structural analysis of ZnO thin films obtained by d.c. sputtering and electron beam evaporation. Powder Diffr. 23, S91–S93 (2008)

    Article  ADS  Google Scholar 

  39. E. Carvalho, V. Soares, C.A. Leães, G.E. Paiva, R.S. Silva, M.S. Silva, Radioluminescence study of calcium tungstate crystalline powders and ceramics. Int. J. Appl. Ceram. Technol. 14, 1–4 (2017)

    Article  Google Scholar 

  40. R. Nasrin, A.H. Bhuiyan, Effect of heat treatment on infrared and ultraviolet–visible spectroscopic studies of the PPnBMA thin films. Appl. Phys. A 124, 1–9 (2018)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Coordination for the Improvement of Higher Education Personnel (CAPES) and National Council for Scientific and Technological Development (CNPq) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Rodrigues.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, E.S., Silva, M.S., Azevedo, W.M. et al. ZnO nanoparticles with tunable bandgap obtained by modified Pechini method. Appl. Phys. A 125, 504 (2019). https://doi.org/10.1007/s00339-019-2805-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2805-4

Navigation