Skip to main content

Advertisement

Log in

Macroporous zirconia particles prepared by subcritical water in batch and flow processes

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Porous zirconia particles were synthesized through a low-temperature hydrothermal synthesis process. Under hydrothermal conditions, water can control the direction of crystal growth, morphology, particle size, and size distribution because thermodynamics and transport properties can be controlled by pressure and temperature. In a batch process, the hydrothermal synthesis was conducted at 200–300 °C and 30 MPa with an SUS-304 tube as the reactor. At the same reaction pressure, experiments were also performed for a flow process with temperatures of 180–200 °C. The synthesized products were calcined and characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The results showed that the macroporous zirconia particles that were formed had pore diameters around 419 nm. The XRD pattern indicated that the products were composed of zirconium oxide particles with monoclinic, tetragonal, and cubic structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Fernandez-Garcia, A. Martinez-Arias, J.C. Hanson, J.A. Rodriguez, Chem. Rev. 104, 4063 (2004)

    Article  CAS  Google Scholar 

  2. G. Dercz, K. Prusik, L. Pajak, J. Achiev. Mater. Manuf. Eng. 18, 259 (2006)

    Google Scholar 

  3. K. Vernieuwe, P. Lommens, J.C. Martins, F. Van Den Broeck, I. Van Driessche, K. De Buysser, Materials 6, 4082 (2013)

    Article  CAS  Google Scholar 

  4. B. Tyagi, K. Sidhpuria, B. Shaik, R.V. Jasra, Ind. Eng. Chem. Res. 45, 8643 (2006)

    Article  CAS  Google Scholar 

  5. G. Herrera, N. Montoya, A. Domenech-Carbo, J. Alarcon, Phys. Chem. Chem. Phys. 15, 9312 (2013)

    Article  Google Scholar 

  6. A.K. Singh, U.T. Nakate, Sci. World J. (2014). doi:10.1155/2014/349457

    Google Scholar 

  7. T. Boningari, R. Koirala, P.G. Smirniotis, Appl. Catal. B: Environ. 127, 255 (2012)

    Article  CAS  Google Scholar 

  8. J.H. Ryu, H.S. Kil, J.H. Song, D.Y. Lim, S.B. Cho, Powder Technol. 221, 228 (2012)

    Article  CAS  Google Scholar 

  9. A.C. Pierre, Introduction to sol–gel processing (Springer, USA, 2002), pp. 6–8

    Google Scholar 

  10. V. Bounor-Legare, P. Cassagnau, Prog. Polym. Sci. 39, 1473 (2014)

    Article  CAS  Google Scholar 

  11. S. Kalia, Y. Haldorai, Organic–inorganic hybrid nanomaterials (Springer, Switzerland, 2015), p. 7

    Google Scholar 

  12. C. Kaya, J.Y. He, X. Gu, E.G. Butler, J. Microporous Mesoporous Mat. 54, 37 (2002)

    Article  CAS  Google Scholar 

  13. H. Hayashi, Y. Hakuta, Materials 3, 3794 (2010)

    Article  CAS  Google Scholar 

  14. T. Adschiri, K. Kanazawa, K. Arai, J. Am. Ceram. Soc. 75, 1019 (1992)

    Article  CAS  Google Scholar 

  15. Z. Fang, Rapid production of micro- and nano-particles using supercritical water (Springer, Germany, 2010), pp. 11–25

    Google Scholar 

  16. H. Hayashi, A. Ueda, A. Suino, K. Hiro, Y. Hakuta, J. Solid State Chem. 182, 2985 (2009)

    Article  CAS  Google Scholar 

  17. M. Taguchi, S. Takami, T. Adschiri, T. Nakane, K. Sato, T. Naka, Cryst. Eng. Comm. 14, 2117 (2012)

    Article  CAS  Google Scholar 

  18. Z. Shu, X. Jiao, D. Chen, Cryst. Eng. Comm. 15, 4288 (2013)

    Article  CAS  Google Scholar 

  19. D.S.S. Padovini, D.S.L. Pontes, C.J. Dalmaschio, F.M. Pontes, E. Longo, RSC Adv. 4, 38484 (2014)

    Article  CAS  Google Scholar 

  20. J. Rouquerolt, D. Avnir, C.W. Fairbridge, D.H. Everett, J.H. Haynes, N. Pernicone, J.D.F. Ramsay, K.S.W. Sing, K.K. Unger, Pure Appl. Chem. 66, 1739 (1994)

    Google Scholar 

  21. H. Wu, P. Badrinarayanan, M.R. Kessler, J. Am. Ceram. Soc. 95, 3643 (2012)

    Article  CAS  Google Scholar 

  22. P.S. Liu, G.F. Chen, Porous materials: processing and applications (Elsevier, Cambridge, MA, 2014), pp. 113–182

    Google Scholar 

  23. S.A. Johnson, P.J. Ollivier, T.E. Mallouk, Science 283, 5404 (1999)

    Google Scholar 

  24. H. Ehrlich, P. Simon, M. Motylenko, M. Wysokowski, V.V. Bazhenov, R. Galli, A.L. Stelling, D. Stawski, M. Ilan, H. Stocker, B. Abendroth, R. Born, T. Jesionowski, K.J. Kurzydlowski, D.C. Meyer, J. Mater. Chem. B 1, 5092 (2013)

    Article  CAS  Google Scholar 

  25. M. Wysokowski, M. Motylenko, V.V. Bazhenov, D. Stawski, I. Petrenko, A. Ehrlich, T. Behm, Z. Kljajic, A.L. Stelling, T. Jesionowski, H. Ehrlich, Front. Mater. Sci. 7, 248 (2013)

    Article  Google Scholar 

  26. A. Tavakoli, M. Sohrabi, A. Kargari, Chem. Pap. 61, 151 (2007)

    Article  CAS  Google Scholar 

  27. W. Li, H. Huang, H. Li, W. Zhang, H. Liu, Langmuir 24, 8358 (2008)

    Article  CAS  Google Scholar 

  28. A. Kierys, R. Zaleski, W. Buda, S. Pikus, M. Dziadosz, J. Goworek, Colloid Polym. Sci. 291, 1463 (2013)

    Article  CAS  Google Scholar 

  29. I.M. Hung, D.T. Hung, K.Z. Fung, M.H. Hon, J. Eur. Ceram. Soc. 26, 2627 (2006)

    Article  CAS  Google Scholar 

  30. N. Tangchupong, W. Khaodee, B. Jongsomjit, N. Laosiripojana, P. Praserthdam, S. Assabumrungrat, Fuel Process. Technol. 91, 121 (2010)

    Article  CAS  Google Scholar 

  31. A. Gaber, M.A. Abdel-Rahim, A.Y. Abdel-Latief, M.N. Abdel-Salam, Int. J. Electrochem. Sci. 9, 81 (2014)

    Google Scholar 

  32. H. Hobbs, S. Briddon, E. Lester, Green Chem. 11, 484 (2009)

    Article  CAS  Google Scholar 

  33. Z. Li, Y. Liu, W. Kwapinski, J.J. Leahy, Mater. Chem. Phys. 145, 82 (2014)

    Article  CAS  Google Scholar 

  34. Y. Sakka, F. Tang, H. Fudouzi, T. Uchikoshi, Sci. Technol. Adv. Mater. 6, 915 (2005)

    Article  CAS  Google Scholar 

  35. M.M.S. Sanad, M.M. Rashad, E.A. Abdel-Aal, M.F. El-Shahat, J. Eur. Ceram. Soc. 32, 4249 (2012)

    Article  CAS  Google Scholar 

  36. Q. Yang, Z. Lu, J. Liu, X. Lei, Z. Chang, L. Luo, X. Sun, Prog. Nat. Sci.: Mater. Int. 23, 351 (2013)

    Article  CAS  Google Scholar 

  37. H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater. 7, 663 (1995)

    Article  CAS  Google Scholar 

  38. H.J. Noh, D.S. Seo, H. Kim, J.K. Lee, Mater. Lett. 57, 2425 (2003)

    Article  CAS  Google Scholar 

  39. R.F. Egerton, Physical principles of electron microscopy: an introduction to TEM, SEM, and AEM (Springer, New York, 2005), pp. 11–16

    Book  Google Scholar 

  40. R. Espinoza-Gonzalez, E. Mosquera, I. Moglia, R. Villarroel, V.M. Fuenzalida, Ceram. Int. 40, 15577 (2014)

    Article  CAS  Google Scholar 

  41. Z.Y. Yuan, T.Z. Ren, A. Vantomme, B.L. Su, Chem. Mater. 16, 5096 (2004)

    Article  CAS  Google Scholar 

  42. L.H. Chen, S.T. Xu, X.Y. Li, G. Tian, Y. Li, J.C. Rooke, G.S. Zhu, S.L. Qiu, Y.X. Wei, X.Y. Yang, Z.M. Liu, B.L. Su, J. Colloid Interf. Sci. 377, 368 (2012)

    Article  CAS  Google Scholar 

  43. S. Park, M.K. Seo, Interface science and composites (Elsevier Ltd., USA, 2011), pp. 70–77

    Google Scholar 

  44. C. Lecoeur, B. Daffos, R. Lin, L. Divay, P. Le Barny, M. PhamThi, P.L. Taberna, P. Simon, Mater. Renew. Sustain Energy 2, 13 (2013)

    Article  Google Scholar 

  45. M. Hosokawa, K. Nogi, M. Naito, T. Yokoyama, Nanoparticle technology handbook, 1st edn. (Elsevier, Amsterdam, 2007), pp. 270–272

    Google Scholar 

  46. Y. Sawaki, K. Matsuo, M. Kishimoto, J. Ceram. Soc. Jpn. 112, S17 (2004)

    Google Scholar 

  47. E. Tani, M. Yoshimura, S. Somiya, J. Ceram. Soc. 66, 11 (1983)

    Article  CAS  Google Scholar 

  48. G. Stefanic, S. Music, K. Molcanov, J. Alloy. Compd. 387, 300 (2005)

    Article  CAS  Google Scholar 

  49. H. Nishizawa, N. Yamasaki, K. Matsuoka, H. Mitsushio, J. Am. Ceram. Soc. 65, 343 (1982)

    Article  CAS  Google Scholar 

  50. S. Pabisch, B. Feichtenschlager, G. Kickelbick, H. Peterlik, Chem. Phys. Lett. 521, 91 (2012)

    Article  CAS  Google Scholar 

  51. K.H. Stern, Metallurgical and ceramic protective coatings (Chapman & Hall, London, 1996), pp. 203–204

    Book  Google Scholar 

  52. H. Toraya, M. Yoshimura, S. Somiya, J. Am. Ceram. Soc. 67, C119 (1984)

    CAS  Google Scholar 

Download references

Acknowledgments

This research was partly supported by a grant from the Directorate General of Higher Education, Ministry of Education and Art of Indonesia through a research Grant Desentralisasi—Penelitian Unggulan Perguruan Tinggi contract no. 016457.8/IT2.7/PN.01.00/2014. This research was also supported by a grant from the Precursory Research for Embryonic Science and Technology Program of the Japan Science and Technology Agency (JST) and in collaboration with the Department of Chemical Engineering, Sepuluh Nopember Institute of Technology (ITS), Indonesia and the Department of Chemical Engineering, Nagoya University, Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machmudah, S., Prastuti, O.P., Widiyastuti et al. Macroporous zirconia particles prepared by subcritical water in batch and flow processes. Res Chem Intermed 42, 5367–5385 (2016). https://doi.org/10.1007/s11164-015-2372-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2372-z

Keywords

Navigation