Skip to main content

Advertisement

Log in

Dark fermentation biorefinery in the present and future (bio)chemical industry

  • Review paper
  • Published:
Reviews in Environmental Science and Bio/Technology Aims and scope Submit manuscript

Abstract

Dark fermentation, also known as acidogenesis, involves the transformation of a wide range of organic substrates into a mixture of products, e.g. acetic acid, butyric acid and hydrogen. This bioprocess occurs in the absence of oxygen and light. The ability to synthesize hydrogen, by dark fermentation, has raised its scientific attention. Hydrogen is a non-polluting energy carrier molecule. However, for energy generation, there is a variety of other sustainable alternatives to hydrogen energy, e.g. solar, wind, tide, hydroelectric, biomass incineration, or nuclear fission. Nevertheless, dark fermentation appears as an important sustainable process in another area: the synthesis of valuable chemicals, i.e. an alternative to petrochemical refinery. Currently, acetic acid, butyric acid and hydrogen are mostly produced by petrochemical reforming, and they serve as precursors of ubiquitous petrochemical derived products. Hence, the future of dark fermentation relies as a core bioprocess in the biorefinery concept. The present article aims to present and discuss the current and future status of dark fermentation in the biorefinery concept. The first half of the article presents the metabolic pathways, product yields and its technological importance, microorganisms responsible for mixed dark fermentation, and operational parameters, e.g. substrates, pH, temperature and head-space composition, which affect dark fermentation. The minimal selling price of dark fermentation products is also presented in this section. The second half discusses the perspectives and future of dark fermentation as a core bioprocess. The relationship of dark fermentation with other (bio)processes, e.g. liquid fuels and fine chemicals, algae cultivation, biomethane–biohythane–biosyngas production, and syngas fermentation, is then explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aceves-Lara CA, Latrille E, Bernet N, Buffiere P, Steyer JP (2008a) A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res 42:2539–2550

    CAS  Google Scholar 

  • Aceves-Lara CA, Latrille E, Buffiere P, Bernet N, Steyer JP (2008b) Experimental determination by principal component analysis of a reaction pathway of biohydrogen production by anaerobic fermentation. Chem Eng Process Process Intensif 47:1968–1975

    CAS  Google Scholar 

  • Aceves-Lara CA, Trably E, Bastidas-Oyanedel JR, Ramirez I, Latrille E, Steyer JP (2008c) Bioenergy production from waste: examples of biomethane and biohydrogen. J Soc Biol 202:177–189

    CAS  Google Scholar 

  • Agler MT, Wrenn BA, Zinder SH, Angenent LT (2011) Waste to bioproducts conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29:70–78

    CAS  Google Scholar 

  • Agler MT, Spirito CM, Usack JG, Werner JJ, Angenent LT (2012) Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy Environ Sci 5:8189–8192

    CAS  Google Scholar 

  • Agreda VH, Zoeller JR (1993) Acetic acid and its derivatives. Marcel Dekker, Inc., New York

    Google Scholar 

  • Ahmed I, Nipattummakul N, Gupta A (2011) Characteristics of syngas from co-gasification of polyethylene and woodchips. Appl Energy 88:165–174

    CAS  Google Scholar 

  • Aikantechnology (2015) Aikan technology, how it works, batch processing. http://www.aikantechnology.com/how-it-works/batch-processing.html. Accessed 12 June 2015

  • Alibaba (2014) Chinese e-commerce. Organic chemical bulk prices. www.alibaba.com. Accessed 24 Nov 2014

  • Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840

    CAS  Google Scholar 

  • Anastas P, Bartlett L, Kirchhoff M, Williamson T (2000) The role of catalysis in the design, development, and implementation of green chemistry. Catal Today 55:11–22

    CAS  Google Scholar 

  • Anastas P, Kirchhoff M, Williamson T (2001) Catalysis as a foundational pillar of green chemistry. Appl Catal A-Gen 221:3–13

    CAS  Google Scholar 

  • Angenent LT, Karim K, Al-Dahhan MH, Wrenn BA, Dominguez-Espinosa R (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485

    CAS  Google Scholar 

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification: a review. Waste Manage 32:625–639

    CAS  Google Scholar 

  • Argun H, Kargi F, Kapdan I (2009) Effects of the substrate and cell concentration on bio-hydrogen production from ground wheat by combined dark and photofermentation. Int J Hydrogen Energy 34:6181–6188

    CAS  Google Scholar 

  • Bastidas-Oyanedel JR, Aceves-Lara CA, Ruiz-Filippi G, Steyer JP (2008) Thermodynamic analysis of energy transfer in acidogenic cultures. Eng Life Sci 8:487–498

    CAS  Google Scholar 

  • Bastidas-Oyanedel JR, Mohd-Zaki Z, Zeng RJ, Bernet N, Pratt S, Steyer JP et al (2012) Gas controlled hydrogen fermentation. Bioresour Technol 110:503–509

    CAS  Google Scholar 

  • Bastidas-Oyanedel J, Kumaraswany R, Rodriguez J (2013) Stability and structure of different microbial communities during dark fermentation of glucose. In: Presented at the 13th World Congress on Anaerobic Digestion, Santiago de Compostela, Spain: IWA Publishing

  • Berry GD, Aceves SM (2005) The case of hydrogen in a carbon constrained world. J Energ Resour ASME 127:189–194

    Google Scholar 

  • Bezerra R, Matsudo M, Sato S, Converti A, de Carvalho J (2013) Fed-Batch Cultivation of Arthrospira platensis using carbon dioxide from alcoholic fermentation and urea as carbon and nitrogen sources. Bioenergy Res 6:1118–1125

    CAS  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das K (2001) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88:3425–3431

    Google Scholar 

  • Bonk F, Bastidas-Oyanedel JR, Schmidt JE (2015) Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation—economic and energy assessment. Waste Manage 40:82–91

    CAS  Google Scholar 

  • Borowitzka M, Moheimani N (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25

    Google Scholar 

  • Bossel U (2006) Does a hydrogen economy make sense? Proc IEEE 94:1826–1837

    CAS  Google Scholar 

  • Boucher S (2006) La revolution de l’hydrogene, vers une energie propre et performante? Paris. Editions du Felin, France

    Google Scholar 

  • Bui L, Luo H, Gunther W, Roman-Leshkov Y (2013) Domino reaction catalyzed by zeolites with Bronsted and Lewis acid sites for the production of gamma-valerolactone from furfural. Angew Chem Int Ed 52:8022–8025

    CAS  Google Scholar 

  • Burkholder J, Glibert P, Skelton H (2008) Mixotrophy, a major mode of nutrition for harmful algal species in eutrophic waters. Harmful Algae 8:77–93

    CAS  Google Scholar 

  • Cai G, Jin B, Monis P, Saint C (2011) Metabolic flux network and analysis of fermentative hydrogen production. Biotech Adv 29:375–387

    CAS  Google Scholar 

  • Cai J, Wang G, Pan G (2012) Hydrogen production form butyrate by a marine mixed phototrophic bacterial consort. Int J Hydrogen Energy 37:4057–4067

    CAS  Google Scholar 

  • Canani R, Di Constanzo M, Leone L, Pedata M, Meli R, Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J Gastroenterol 17:1519–1528

    CAS  Google Scholar 

  • Canani R, Di Constanzo M, Leone L (2012) The epigenic effects of butyrate: potential therapeutic implications for clinical practice. Clin Epigenetics 4:4

    CAS  Google Scholar 

  • Cardozo K, Guaratini T, Barros M, Falcao V, Tonon A, Lopes N et al (2007) Metabolites from algae with economical impact. Comp Biochem Phys C 146:60–78

    Google Scholar 

  • Cavinato C, Bolzonella D, Fatone F, Cecchi F, Pavan P (2011) Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour Technol 102:8605–8611

    CAS  Google Scholar 

  • Cavinato C, Giuliano A, Bolzonella D, Pavan P, Cecchi F (2012) Bio-hythane production from food waste by dark fermentation coupled with anaerobic digestion process: a long-term pilot scale experience. Int J Hydrogen Energy 37:11548–11555

    Google Scholar 

  • ccminternational (2012) China’s l-arginine industry enjoys rapid development. https://ccminternational.wordpress.com/2012/04/13/chinas-l-arginine-industry-enjoys-rapid-development/. Accessed 25 Nov 2014

  • Chaturvedi T (2013) Evaluation of bioenergy production from lignocellulosic biomass of Salicornia Bigelovii. MSc, Chemical Engineering, Masdar Institute of Science and Technology, Abu Dhabi, UAE

  • Chen CC, Lin CY (2001) Start-up of anaerobic hydrogen producing reactors seeded with sewage sludge. Acta Biotechnol 21:371–379

    CAS  Google Scholar 

  • Chen CC, Lin CY, Lin M (2002) Acid-base enrichment enhances anaerobic hydrogen production process. Appl Microbiol Biotechnol 58:224–228

    Google Scholar 

  • Cheze B, Gastineau P, Chevallier J (2011) Foreasting world and regional aviation jet fuel demands to the mid-term (2025). Energ Policy 39:5147–5158

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    CAS  Google Scholar 

  • Choi K, Jeon B, Kim B, Oh M, Um Y, Sang B (2013) In situ biphasic extractive fermentation for hexanoic acid production from sucrose by megasphaera elsdenii NCIMB 702410. Appl Biochem Biotechnol 171:1094–1107

    CAS  Google Scholar 

  • Chong ML, Sabaratnam V, Shirai Y, Hassan MA (2009) Biohydrogen production from biomass and industrial wastes by dark fermentation. Int J Hydrogen Energy 34:3277–3287

    CAS  Google Scholar 

  • Chu CY, Sen B, Lay CH, Lin YC, Lin CY (2012) Direct Fermentation of sweet potato to produce maximal hydrogen and ethanol. Appl Energy 100:10–18

    CAS  Google Scholar 

  • Chuang S (2012) Conversion of syngas to fuels. Handbook of climate change mitigation. Springer, Berlin

    Google Scholar 

  • Chung I, Beardall J, Mehta S, Sahoo D, Stojkovic S (2011) Using marine macroalgae for carbon sequestration: a critical appraisal. J Appl Phycol 23:877–886

    CAS  Google Scholar 

  • Colin T, Bories A, Sire Y, Perrin R (2005) Treatment and valorisation of winery wastewater by a new biophysical process (ECCF®). Water Sci Technol 51:99–106

    CAS  Google Scholar 

  • Collet C, Girbal L, Peringer P, Schwitzguebel JP, Soucaille P (2006) Metabolism of lactose by Clostridium thermolacticum growing in continuous culture. Arch Microbiol 185:331–339

    CAS  Google Scholar 

  • Cornils B (1999) Bulk and fine chemicals via aqueous biphasic catalysis. J Mol Catal A Chem 143:1–10

    CAS  Google Scholar 

  • Davies O, Lewis A, Whitaker M, Tai H, Shakesheff K, Howdle S (2008) Applications of supercritical CO2 in the fabrication of polymer systems for drug delivery and tissue engineering. Adv Drug Deliver Rev 60:373–387

    CAS  Google Scholar 

  • Demain A (2007) The business of biotechnology. Ind Biotechnol 3:269–283

    Google Scholar 

  • Demirbas A (2002) Biodiesel from vegetable oils via transesterification in supercritical methanol. Energy Convers Manag 43:2349–2356

    CAS  Google Scholar 

  • Dhamankar H, Prather K (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struct Biol 21:488–494

    CAS  Google Scholar 

  • Dry M (2002) The Fischer-Tropsch process: 1950–2000. Catal Today 71:227–241

    CAS  Google Scholar 

  • Dwidar M, Park JY, Mitchell RJ, Sang BI (2012) The future of butyric acid in industry. Scientific World J. doi:10.1100/2012/471417

    Google Scholar 

  • Eggeman T, Verser D (2005) Recovery of organic acids from fermentation broths. Appl Biochem Biotechnol 121–124:605–618

    Google Scholar 

  • Ennis BM, Marshall CT, Maddox IS, Paterson AHJ (1986) Continuous product recovery by in situ gas stripping/condensation during solvent production from whey permeate using Clostridium acetobutylicum. Biotechnol Lett 8:725–730

    CAS  Google Scholar 

  • Ezeji TC, Karcher PM (2005) Improving performance of a gas stripping-based recovery system to remove butanol from Clostridium beijerinckii fermentation. Bioprocess Biosyst Eng 27:207–214

    CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2003) Production of acetone, butanol and ethanol by Clostridium beijerinckii BA101 and in situ recovery by gas stripping. World J Microbiol Biotechnol 19:595–603

    CAS  Google Scholar 

  • Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour Technol 82:87–93

    CAS  Google Scholar 

  • Fasahati P, Liu J (2014) Techno-economic analysis of production and recovery of volatile fatty acids from brown algae using membrane distillation. Comput Aided Chem Eng 34:303–308

    CAS  Google Scholar 

  • Ford W (2001) Catalysis by colloidal polymers in aqueous media. React Funct Polym 48:3–13

    CAS  Google Scholar 

  • Freudenberger R (2009) A guide to small-scale ethanol, alcohol fuel, making and using ethanol as a renewable fuel. New Society Publishers, Gabriola Island

    Google Scholar 

  • Gaertner C, Serrano-Ruiz J, Braden D, Dumesic J (2009) Catalytic coupling of carboxylic acids by ketnonization as a processing step in biomass conversion. J Catal 266:71–78

    CAS  Google Scholar 

  • Gallezot P (2007) Catalytic routes from renewables to fine chemicals. Catal Today 121:76–91

    CAS  Google Scholar 

  • Geerlings J, Wilson J, Kramer G, Kuipers H, Hoek A, Huisman H (1999) Fischer-Tropsch technology—from active site to commercial process. Appl Catal A Gen 186:27–40

    CAS  Google Scholar 

  • Gerardi MH (2003) The microbiology of anaerobic digesters. Wiley, Hoboken

    Google Scholar 

  • Gheshlaghi R, Scharer JM, Moo-Young M, Chou CP (2009) Metabolic pathways of clostridia for producing butanol. Biotechnol Adv 27:764–781

    CAS  Google Scholar 

  • Gomez X, Moran A, Cuetos MJ, Sanchez ME (2006) The production of hydrogen by dark fermentation of municipal solid wastes and slaughterhouse waste: a two-phase process. J Power Sources 157:727–732

    CAS  Google Scholar 

  • Gonzalez-Cabaleiro R, Lema JM, Rodriguez J (2015) Metabolic energy-based modeling explains product yielding in anaerobic mixed culture fermentations. PLoS One. doi:10.1371/journal.pone.0126739

    Google Scholar 

  • Grand View Research (2014) Global lactic acids and polylactic acid market. www.grandviewresearch.com/press-release/global-lactic-acid-poly-lactic-acid-market. Accessed 24 Nov 2014

  • Granda C, Holtzapple M, Luce G, Searcy K, Mamrosh D (2009) Carboxylate platform: the MixAlco process part 2: process economics. Appl Biochem Biotechnol 156:107–124

    Google Scholar 

  • Groot WJ, van der Lans RGJM, Luyben KCAM (1989) Batch and continuous butanol fermentations with free cells: integration with product recovery by gas-stripping. Appl Microbiol Biotechnol 32:305–308

    CAS  Google Scholar 

  • Gujer W, Zehnder AJB (1983) Conversion processes in anaerobic digestion. Water Sci Technol 15:127–167

    CAS  Google Scholar 

  • Guo XM, Trably E, Latrille E, Carrere H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673

    CAS  Google Scholar 

  • Hadipour A, Sohrabi M (2008) Synthesis of some bifunctional catalysts and determination of kinetic parameters for direct conversion of syngas to dimethyl ether. Chem Eng J 137:294–301

    CAS  Google Scholar 

  • Hafez H, Naggar MHE, Nakhla G (2010) Steady-state and dynamic modeling of biohydrogen production in an integrated biohydrogen reactor clarifier system. Int J Hydrogen Energy 35:6634–6645

    CAS  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    CAS  Google Scholar 

  • Hallenbeck P (2009) Fermentative hydrogen production: principles, progress and prognosis. Int J Hydrogen Energy 34:7379–7389

    CAS  Google Scholar 

  • Hamer H, Jonkers D, Venema K, Vanhoutvin S, Troost F, Brummer R (2008) Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 27:104–119

    CAS  Google Scholar 

  • Han SK, Shin HS (2004) Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:567–577

    Google Scholar 

  • Hawkes FR, Dinsdale R, Hawkes DL, Hussy I (2002) Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy 27:1339–1347

    CAS  Google Scholar 

  • Hawkes FR, Hussy I, Kyazze G, Dinsdale R, Hawkes DL (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184

    Google Scholar 

  • Heiskanen H, Virkajarvi I, Viikari L (2007) The effect of syngas composition on the growth and product formation of Butyribacterium methylotrophicum. Enzyme Microb Technol 41:362–367

    CAS  Google Scholar 

  • Henstra A, Sipma J, Rinzema A, Stams A (2007) Microbiology of synthesis gas fermentation for biofuel production. Curr Opin Biotechnol 18:200–206

    CAS  Google Scholar 

  • Hoffmann P (2001) Tomorrow’s energy, hydrogen, fuel cells, and the prospects for a cleaner planet. The MIT Press, Cambridge

    Google Scholar 

  • Hu W, Sin S, Chua H, Yu P (2005) Synthesis of polyhydroxyalkanoate (PHA) from excess activated sludge under various oxidation-reduction potentials (ORP) by using acetate and propionate as carbon sources. Appl Biochem Biotechnol 121–124:289–301

    Google Scholar 

  • Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    CAS  Google Scholar 

  • Hwang MH, Jang NJ, Hyun SH, Kim IS (2004) Anaerobic bio-hydrogen producion from ethanol fermentation: the role of pH. J Biotechnol 111:297–309

    CAS  Google Scholar 

  • Im WT, Kim DH, Kim KH, Kim MS (2012) Bacterial community analyses by pyrosequencing in dark fermentative H2-producing reactor using organic wastes as a feedstock. Int J Hydrogen Energy 37:8330–8337

    CAS  Google Scholar 

  • Indexmundi (2014) International prices of commodities. www.indexmundi.com. Accessed 24 Nov 2014

  • Insam H, Franke-Whittle I, Goberna M (2010) Microbes at work, from wastes to resources. Springer, Berlin Heidelberg

    Google Scholar 

  • Jang E, Jung M, Min D (2005) Hydrogenation of low trans and high conjugated fatty acids. Compr Rev Food Sci Food Saf 1:22–30

    Google Scholar 

  • Jeon Y, Cho C, Yun Y (2006) Combined effects of light intensity and acetate concentration on the growth of unicellular microalga Haematococcus pluvialis. Enzyme Microb Technol 39:490–495

    CAS  Google Scholar 

  • Jeon B, Kim B, Um Y, Sang B (2010) Production of hexanoic acid from d-galactitol by a newly isolated Clostridium sp. BS-1. Appl Microbiol Biotechnol 88:1161–1167

    CAS  Google Scholar 

  • Jeon B, Moon C, Kim B, Kim H, Um Y, Sang B (2013) In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp. BS-1. Enzyme Microb Technol 53:143–151

    CAS  Google Scholar 

  • Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Bioresour Technol 143:525–530

    CAS  Google Scholar 

  • Joo F (2008) Breakthroughs in hydrogen storage—formic acid as a sustainable storage material for hydrogen. Chem Sus Chem 1:805–808

    CAS  Google Scholar 

  • Jung K, Kim D, Shin H (2011a) A simple method to reduce the start-up in a H2-producing UASB reactor. Int J Hydrogen Energy 36:1466–1473

    CAS  Google Scholar 

  • Jung K, Kim D, Shin H (2011b) Bioreactor design for continuous dark fermentative hydrogen production. Bioresour Technol 102:8612–8620

    CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries—industrial processes and products. Wiley-VCH, Weinheim

    Google Scholar 

  • Kaparaju P, Serrano M, Thomsen AB, Kongjan P, Angelidaki I (2009) Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresour Technol 100:2562–2568

    CAS  Google Scholar 

  • Karadag D, Puhakka J (2010) Effect of changing temperature on anaerobic hydrogen production and microbial community composition in an open-mixed culture bioreactor. Int J Hydrogen Energy 35:10954–10959

    CAS  Google Scholar 

  • Karlsson A, Vallin L, Ejlertsson J (2008) Effects of temperature, hydraulic retention time and hydrogen extraction rate on hydrogen production from the fermentation of food industry residues and manure. Int J Hydrogen Energy 33:953–962

    CAS  Google Scholar 

  • Kenealy W, Cao Y, Weimer P (1995) Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol. Appl Microbiol Biotechnol 44:507–513

    CAS  Google Scholar 

  • Khardenavis A, Wang J, Ng W, Purohit H (2013) Management of various organic fractions of municipal solid waste via recourse to VFA and biogas generation. Environ Technol 34:2085–2097

    Google Scholar 

  • Kim I, Hwang MH, Jang NJ, Hyun SH, Lee S (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in biohydrogen process. Int J Hydrogen Energy 29:1133–1140

    CAS  Google Scholar 

  • Kim M, Baek J, Yun Y, Sim S, Park S, Kim S (2006) Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy 31:812–816

    CAS  Google Scholar 

  • Kim H, Leeds P, Chuang D (2009) The HDAC inhibitor, sodium butyrate, stimulates neurogenesis in the ischemic brain. J Neurochem 110:1226–1240

    CAS  Google Scholar 

  • Kobayashi M, Kakizono T, Nagai S (1993) Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl Environ Microbiol 59:867–873

    CAS  Google Scholar 

  • Kraemer JT (2004) Effects of methanogenic effluent recycle on fermentative hydrogen production PhD Thesis, University of Toronto, Toronto, Canada

  • Kumar K, Dasgupta C, Nayak B, Lindblad P, Das D (2011) Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour Technol 102:4945–4953

    CAS  Google Scholar 

  • Kurzynski M (2006) The thermodynamic machinery of life. Springer, Leipzig

    Google Scholar 

  • Ladygina N, Dedyukhina E, Vainshtein M (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1004

    CAS  Google Scholar 

  • Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–287

    CAS  Google Scholar 

  • Lay JJ, Lee YJ, Noike T (1999) Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res 33:2579–2586

    CAS  Google Scholar 

  • Lee D, Li Y, Noike T, Cha G (2008) Behaviour of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor. J Memb Sci 322:13–18

    CAS  Google Scholar 

  • Lee D, Li Y, Noike T (2010) Influence of solids retention time on continuous H2 production using membrane bioreactor. Int J Hydrogen Energy 35:52–60

    CAS  Google Scholar 

  • Leung A, Boocock D, Konar S (1995) Pathway for the catalytic conversion of carboxylic acids to hydrocarbons over activated alumina. Energy Fuel 9:913–920

    CAS  Google Scholar 

  • Leyva M, Vicedo B, Finiti I, Flors V, Del Amo G, Real M et al (2008) Preventive and post-infection control of Botrytis cinerea in tomato plants by hexanoic acid. Plant Pathol 57:1038–1046

    CAS  Google Scholar 

  • Li C, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39

    Google Scholar 

  • Li W, Yu H (2011) From wastewater to bioenergy and biochemicals via two-stage bioconversion processes: a future paradigm. Biotechnol Adv 29:972–982

    CAS  Google Scholar 

  • Liang Y, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    CAS  Google Scholar 

  • Lin CY, Chang RC (2004) Fermentative hydrogen production at ambient temperature. Int J Hydrogen Energy 29:715–720

    CAS  Google Scholar 

  • Lin CY, Lay CH (2004) Carbon/nitrogen-ratio effect on fermentative hydrogen production by mixed microflora. Int J Hydrogen Energy 29:41–45

    CAS  Google Scholar 

  • Lin CY, Lay CH (2005) A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int J Hydrogen Energy 30:285–292

    CAS  Google Scholar 

  • Lindblad MS, Liu Y, Albertsson AC, Ranucci E, Karlsson S (2002) Polymers from renewable resources. In: Albertsson AC (ed) Degradable aliphatic polyesters. Springer, Berlin, pp 139–161

    Google Scholar 

  • Liu WT, Chan OC, Fang HHP (2002) Microbial community dynamics during start-up of acidogenic anaerobic reactors. Water Res 36:3203–3210

    CAS  Google Scholar 

  • Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236

    CAS  Google Scholar 

  • Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294:1–8

    CAS  Google Scholar 

  • Maddox IS, Qureshi N, Roberts-Thomson K (1995) Production of acetone-butanol-ethanol from concentrated susbtrates using Clostridium acetobutylicum in an integrated fermentation-product removal process. Process Biochem 30:209–215

    CAS  Google Scholar 

  • Magid J (2006) Short-Circuit short circuiting the carbon and nutrient cycles between urban and rural districts by establishing three new systems for source separation, collection and composting of organic waste in the greater Copenhagen area. Final report presented to the EU-life program. http://orgprints.org/9230/. Accessed 21 June 2015

  • Marinoiu A, Cobzaru C, Carcadea E, Capris C, Tanislav V, Raceanu M (2013) Hydrogenolysis of glycerol to propylene glycol using heterogeneous catalysis in basic aqueous solutions. React Kinet Mech Catal 110:63–73

    CAS  Google Scholar 

  • Market Publishers (2012) Global n-butanol market to reach 4 Mt by 2020. http://marketpublishers.com/lists/13495/news.html. Accessed 24 Nov 2014

  • Markou G, Georgakakis D (2011) Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: a review. Appl Energy 88:3389–3401

    CAS  Google Scholar 

  • McKendry P (2002a) Energy production from biomass (part 2): conversion technologies. Bioresour Technol 83:47–54

    CAS  Google Scholar 

  • McKendry P (2002b) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    CAS  Google Scholar 

  • Mecking S, Held A, Bauers F (2002) Aqueous catalytic polymerization of olefins. Angew Chem Int Ed 41:544–561

    CAS  Google Scholar 

  • Mitchell R, Gu JD (2010) Environmental microbiology, 2nd edn. Wiley-Blackwell, Hoboken

    Google Scholar 

  • Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    CAS  Google Scholar 

  • Mohammadi M, Najafpour G, Younesi H, Lahijani P, Uzir M, Mohamed A (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sustain Energy Rev 15:4255–4273

    CAS  Google Scholar 

  • Mu Y, Zheng XJ, Yu HQ, Zhu R (2006) Biological hydrogen production by anaerobic sludge at various temperatures. Int J Hydrogen Energy 31:780–785

    CAS  Google Scholar 

  • Mu Y, Yu HQ, Wang G (2007) A kinetic approach to anaerobic hydrogen-producing process. Water Res 41:1152–1160

    CAS  Google Scholar 

  • Munster M (2009) Energy systems analysis of waste to energy technologies by use of energyPLAN. Riso report, Danish Technical University. http://orbit.dtu.dk/fedora/objects/orbit:81741/datastreams/file_4069900/content. Accessed 12 June 2015

  • Murzin D, Leino R (2008) Sustainable chemical technology through catalytic multistep reactions. Chem Eng Res Des 86:1002–1010

    CAS  Google Scholar 

  • Murzin D, Simakova I (2011) Catalysis in biomass processing. Catal Ind 3:218–249

    Google Scholar 

  • Mussatto SL, Dragone G, Guimaraes PMR, Silva JPA, Carneiro LM, Roberto IC et al (2010) Technological trends, global market, and challenges of bio-ethanol production. Biotechnol Adv 28:817–830

    CAS  Google Scholar 

  • Najdenski H, Gigova L, Illiev I, Pilarski P, Lukavsky J, Tsvetkova I et al (2013) Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int J Food Sci Technol 48:1533–1540

    CAS  Google Scholar 

  • Nielsen AT, Amandusson H, Bjorklund R, Dannentun H, Ejlertsson J, Ekedahl LG et al (2001) Hydrogen production from organic waste. Int J Hydrogen Energy 26:547–550

    CAS  Google Scholar 

  • Nishio N, Nakashimada Y (2007) Recent development of anaerobic digestion processes for energy recovery from wastes. J Biosci Bioeng 103:105–112

    CAS  Google Scholar 

  • Ntaikou I, Antonopoulou G, Lyberatos G (2010) Biohydrogen production from biomass and wastes via drak fermentation: a review. Waste Biomass Valoriz 1:21–39

    CAS  Google Scholar 

  • Nwobi A (2013) Techno-economic evaluation of biofuel production from organic fraction of municipal solid waste (OFMSW) generated in Abu Dhabi. MSc thesis, Masdar Institute of Science and Technology, Abu Dhabi, UAE

  • Ogbonna J, Yoshizawa H, Tanaka H (2000) Treatment of high strength organic wastewater by a mixed culture of photosynthetic microorganisms. J Appl Phycol 12:277–284

    CAS  Google Scholar 

  • Oh S, Iyer P, Bruns M, Logan B (2004) Biological hydrogen production using a membrane bioreactor. Biotechnol Bioeng 87:119–127

    CAS  Google Scholar 

  • OPEC (2014) 2014 world oil outlook. Organization of the Petroleum Exporting Countries, Vienna

    Google Scholar 

  • Pauss A, Andre G, Perrier M, Guiot S (1990) Liquid-to-mass transfer in anaerobic processes: inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl Environ Microb 56:1636–1644

    CAS  Google Scholar 

  • Pavlostathis SG, Gossett JM (1988) Preliminary conversion mechanisms in anaerobic digestion of biological sludges. J Environ Eng 114:575–592

    CAS  Google Scholar 

  • Peighambardoust SJ, Rowshanzamir S, Amjadi M (2010) Review of the proton exchange membranes for fuel cell applications. Int J Hydrogen Energy 35:9349–9384

    CAS  Google Scholar 

  • Petkov G, Ivanova A, Iliev I, Vaseva I (2012) A critical look at the microalgae biodiesel. Eur J Lipid Sci Technol 114:103–111

    CAS  Google Scholar 

  • Pinto F, Franco C, Andre R, Miranda M, Gulyurtlu I, Cabrita I (2002) Co-gasification study of biomass mixed with plastic wastes. Fuel 81:291–297

    CAS  Google Scholar 

  • Pirie C, De Mey M, Prather K, Ajikumar P (2013) Integrating the protein and metabolic engineering tollkits for next-generation chemical biosynthesis. ACS Chem Biol 8:662–672

    CAS  Google Scholar 

  • Porpatham E, Ramesh A, Nagalingam B (2007) Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrogen Energy 32:2057–2065

    CAS  Google Scholar 

  • Prakasham RS, Sathish T, Brahmaiah P (2010) Biohydrogen production process optimization using anaerobic mixed consortia: a prelude study for use of agro-industrial material hydrolysate as substrate. Bioresour Technol 101:5708–5711

    CAS  Google Scholar 

  • PRnewswire (2013) Global salicylic acid market is expected to reach USD 5212 million in 2019. http://www.prnewswire.com/news-releases/global-salicylic-acid-market-is-expected-to-reach-usd-5212-million-in-2019-transparency-market-research-225332251.html. Accessed 24 Nov 2014

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    CAS  Google Scholar 

  • Quemeneur M, Hamelin J, Guidici-Orticoni T, Latrille E, Steyer JP, Trably E (2011) Changes in hydrogenase genetic diversity and proteomic patterns in mixed-cultured dark fermentation of mono, di- and tri-saccharides. Int J Hydrogen Energy 36:11654–11665

    CAS  Google Scholar 

  • Queneau Y, Pinel C, Scherrmann M (2011) Some chemical transformations of carbohydrates in aqueous medium. C R Chim 14:688–699

    CAS  Google Scholar 

  • Rajhi H, Conthe M, Puyol D, Diaz E, Sanz J (2013) Dark fermentation: isolation and characterization of hydrogen-producing strains from sludges. Int Microbiol 16:53–62

    CAS  Google Scholar 

  • Rashid K (2013) Prospects for algal biofuels in UAE: technology and economics. MSc Thesis Masdar Institute of Science and Technology, Abu Dhabi, UAE

  • Reddy AKN, Williams RH, Johansson T (1997) Energy after Rio: prospects and challenges. United Nations Development Programme (UNDP), New York

    Google Scholar 

  • Redwood M, Paterson-Beedle M, Macaskie L (2009) Integrating dark and light bio-hydrogen production strategies: towards the hydrogen economy. Rev Environ Sci Biotechnol 8:149–185

    CAS  Google Scholar 

  • Ren N, Cao G, Xu J, Gao L (2009) Bioconversion of lignocellulosic biomass to hydrogen: potential and challenges. Biotechnol Adv 27:1051–1060

    CAS  Google Scholar 

  • REnescience (2015) Technology and services. http://www.renescience.com/en/technology-and-services/technology. Accessed 12 Jun 2015

  • Rephaeli A, Zhuk R, Nudelman A (2000) Prodrugs of butyric acid from bench to bedside: synthetic design, mechanisms of action, and clinical applications. Drug Devlop Res 50:379–391

    CAS  Google Scholar 

  • Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111:83–89

    CAS  Google Scholar 

  • Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb Cell Fact 11:115

    CAS  Google Scholar 

  • Roddy D (2013) A syngas network for reducing industrial carbon footprint and energy use. Appl Therm Eng 53:299–304

    CAS  Google Scholar 

  • Roehr M (2001) The biotechnology of ethanol, classical and future applications. Wiley-VCH verlag GmbH, Weinheim

    Google Scholar 

  • Rogers P, Chen J, Zidwick M (2006) Organic acid and solvent production. The Prokaryotes, 3rd edn. Springer, Berlin Heidelberg, pp 511–755

    Google Scholar 

  • Romano AH, Conway T (1996) Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448–455

    CAS  Google Scholar 

  • Ruiz-Rodriguez A, Fornan T, Hernandez E, Senorans F, Reglero G (2010) Thermodynamic modeling of dealcoholization of beverages using supercritical CO2: application to wine samples. J Supercrit Fluid 52:183–188

    CAS  Google Scholar 

  • Sahena F, Zaidul I, Jinap S, Karim A, Abbas K, Norulaini N et al (2009) Application of supercritical CO2 in lipid extraction—a review. J Food Eng 95:240–253

    CAS  Google Scholar 

  • Sauer U, Santangelo J, Treuner A, Buchholz M, Durre P (1995) Sigma factor and sporulation genes in Clostridium. FEMS Microbiol Rev 17:331–340

    CAS  Google Scholar 

  • Schink B, Kremer DR, Hansen TA (1987) Pathway of propionate formation from ethanol in Pelobacter propionicus. Arch Microbiol 147:321–327

    CAS  Google Scholar 

  • Seeliger S, Janssen PH, Schink B (2006) Energetics and kinetics of lactate fermentation to acetate and propionate via methylmalonyl-CoA or acrylyl-CoA. FEMS Microbiol Lett 211:65–70

    Google Scholar 

  • Shi X, Yu H (2005) Optimization of volatile fatty acid compositions for hydrogen production by Rhodopseudomonas capsulata. J Chem Technol Biot 80:1198–1203

    CAS  Google Scholar 

  • Shi X, Yu H (2006) Continuous production of hydrogen from mixed volatile fatty acids with Rhodopseudomonas capsulata. Int J Hydrogen Energy 31:1641–1647

    CAS  Google Scholar 

  • Shin HS, Younb JH, Kim SH (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29:1355–1363

    CAS  Google Scholar 

  • Show K, Lee D, Chang J (2011) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533

    CAS  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechol Adv 27:409–416

    CAS  Google Scholar 

  • Sierens R, Rosseel E (2000) Variable composition hydrogen/natural gas mixtures for increased engine efficiency and decreased emissions. J Eng Gas Turb Power 122:135–140

    CAS  Google Scholar 

  • Singh U, Ahluwalia A (2013) Microalgae: a promising tool for carbon sequestration. Mitig Adapt Strateg Glob Change 18:73–95

    Google Scholar 

  • Sossai P (2012) Butyric acid: what is the future for this old substance? Swiss Med Wkly 142:w13596

    Google Scholar 

  • Sparling R, Islam R, Cicek N, Carere C, Chow H, Levin DB (2006) Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol 52:681–688

    CAS  Google Scholar 

  • Spivey J, Gangwal S, Zoeller JR, Winslow J, Srivastava RD (2000) Syngas conversion to fuels and chemicals. Catal Today 58:231

    CAS  Google Scholar 

  • Sudesh K, Doi A (2000) Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters. Prog Polym Sci 25:1503–1555

    CAS  Google Scholar 

  • Tanaka N, Kjorven O, Yumkella K (2010) Energy poverty, how to make modern energy access universal?. International Energy Agency (IEA), United Nations Development Programme (UNDP), and United Nations Industrial Development Organization (UNIDO), Paris

    Google Scholar 

  • Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrogen Energy 23:559–563

    CAS  Google Scholar 

  • Tawfik A, El-Qelish M (2012) Continuous hydrogen production from co-digestion of municipal food waste and kitchen wastewater in mesophilic anaerobic baffled reactor. Bioresour Technol 114:270–274

    CAS  Google Scholar 

  • Temudo MF, Kleerebezem R, van Loosdrecht MCM (2007) Influence of the pH on (open) mixed culture fermentation of glucose: a chemostat study. Biotechnol Bioeng 98:69–79

    CAS  Google Scholar 

  • Temudo MF, Muyzer G, Kleerebezem R, van Loosdrecht MCM (2008a) Diversity of microbial communities in open mixed culture fermentations: impact of the pH and carbon source. Appl Microbiol Biotechnol 80:1121–1130

    CAS  Google Scholar 

  • Temudo MF, Poldermans R, Kleerebezem R, van Loosdrecht MCM (2008b) Glycerol fermentation by (open) mixed cultures: a chemostat study. Biotechnol Bioeng 100:1088–1098

    CAS  Google Scholar 

  • Temudo MF, Mato T, Kleerebezem R, van Loosdrecht MCM (2009) Xylose anaerobic conversion by open-mixed cultures. Appl Microbiol Biotechnol 82:231–239

    CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    CAS  Google Scholar 

  • Tholozan JL, Touzel JP, Samain E, Grivet JP, Prensier G, Albagnac G (1992) Clostridium neopropionicum sp-nov a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch Microbiol 157:249–257

    CAS  Google Scholar 

  • Tomasko D, Burley A, Feng L, Yeh S, Miyazono K, Nirmal-Kumar S et al (2009) Development of CO2 for polymer foam applications. J Supercrit Fluid 47:493–499

    CAS  Google Scholar 

  • Tran N, Barlett J, Kannangara G, Milev A, Volk H, Wilson M (2010) Catalytic upgrading of biorefinery oil from micro-algae. Fuel 89:265–274

    CAS  Google Scholar 

  • Ueno Y, Kawai T, Sato S, Otsuka S, Morimoto M (1995) Biological production of hydrogen from cellulose by natural anaerobic microflora. J Ferment Bioeng 79:395–397

    CAS  Google Scholar 

  • Uhm S, Chung ST, Lee J (2008) Characterization of direct formic acid fuel cells by impedance studies: in comparison of direct methanol fuel cells. J Power Sources 178:34–43

    CAS  Google Scholar 

  • Uratani J (2013) Anerobic digestion of halophytic plant residues for biogas production and nutrient recovery. MSc Thesis, Masdar Institute of Science and Technology, Abu Dhabi, UAE

  • Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629

    CAS  Google Scholar 

  • Vanhoutvin S, Troost F, Kilkens T, Lindsey P, Hamer H, Jonkers D et al (2009) The effects of butyrate enemas on viceral perception in healthy volunteers. Neurogastroenterol Motil 21:952–e76

    CAS  Google Scholar 

  • Vasudevan D, Richter H, Angenent L (2014) Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresour Technol 151:378–382

    CAS  Google Scholar 

  • Waligorska M (2012) Fermentative hydrogen production—process design and bioreactors. Chem Process Eng 33:585–594

    CAS  Google Scholar 

  • Wang S, Guo Z, Cai Q, Guo L (2012) Catalytic conversion of carboxylic acids in bio-oil for liquid hydrocarbons production. Biomass Bioenergy 45:138–143

    CAS  Google Scholar 

  • Wang Y, Mu Y, Yu HQ (2007) Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrogen Energy 32:1086–1094

    CAS  Google Scholar 

  • Weibel G, Ober C (2003) An overview of supercritical CO2 applications in microelectronics processing. Microelectron Eng 65:145–152

    Google Scholar 

  • Weissermel K, Arpe HJ (1997) Industrial organic chemistry. VCH Publishers, New York

    Google Scholar 

  • Wilhelm D, Simbeck D, Karp A, Dickenson R (2001) Syngas production for gas-to-liquids applications: technologies, issues and outlook. Fuel Process Technol 71:139–148

    CAS  Google Scholar 

  • Williams T, Shaddix C, Schefer R (2008) Effect of syngas composition and CO2-diluted oxygen on performance of a premixed swirl-stabilized combustor. Combust Sci Technol 180:64–88

    CAS  Google Scholar 

  • Willke T, Vorlop K (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    CAS  Google Scholar 

  • Willquist K, Nkemba VN, Svensson H, Pawar S, Ljunggren M, Karlsson H et al (2012) Design of a novel biohythane process with high H2 and CH4 production rates. Int J Hydrogen Energy 37:17749–17762

    CAS  Google Scholar 

  • Ye N, Lu F, Shao L, Godon J, He P (2007) Bacterial community dynamics and product distribution during pH-adjusted fermentation of vegetable wastes. J Appl Microbiol 103:1055–1065

    CAS  Google Scholar 

  • Yokoi H, Saitsu A, Uchida H, Hirose J, Hayashi S, Takasaki Y (2001) Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng 91:58–63

    CAS  Google Scholar 

  • Zacharof M, Lovitt R (2013) Complex effluent streams as a potential source of volatile acids. Waste Biomass Valor 4:557–581

    CAS  Google Scholar 

  • Zahedi S, Sales D, Romero L, Solera R (2013) Hydrogen production from the organic fraction of municipal solid waste: in anaerobic thermophilic acidogenesis: influence of organic loading rate and microbial content of the solid waste. Bioresour Technol 129:85–91

    CAS  Google Scholar 

  • Zeeshan N, Hinrich U (2014) Enhancing the hydrolysis process of a two-stage biogas technology for the organic fraction of municipal solid waste. In: Presented at the international conference on anaerobic digestion “BiogasScience 2014”, Vienna, Austria

  • Zehnder A, Svensson B (1986) Life without oxygen: what can and what cannot? Experentia 42:1197–1205

    CAS  Google Scholar 

  • Zhang Y (2014) Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnol Adv. doi:10.1016/j.biotechadv.2014.10.009

    Google Scholar 

  • Zhang Y, Shen J (2006) Effect of temperature and iron concentration on the growth and hydrogen production of mixed bacteria. Int J Hydrogen Energy 31:441–446

    CAS  Google Scholar 

  • Zhang Z, Show K, Tay J, Liang D, Lee D, Jiang W (2007) Rapid formation of hydrogen producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation. Biotechnol Bioeng 96:1040–1050

    CAS  Google Scholar 

  • Zhang C, Yang H, Yang F, Ma Y (2009) Current progress on butyric acid production by fermentation. Curr Microbiol 59:656–663

    CAS  Google Scholar 

  • Zhang F, Zhang Y, Chen M, Zeng RJ (2012) Hydrogen supersaturation in thermophilic mixed culture fermentation. Int J Hydrogen Energy 37:17809–17816

    CAS  Google Scholar 

  • Zhang F, Ding J, Shen N, Zhang Y, Ding Z, Dai K et al (2013a) In situ hydrogen utilization for high fraction acetate production in mixed culture hollow-fiber membrane biofilm reactor. Appl Microbiol Biotechnol 97:10233–10240

    CAS  Google Scholar 

  • Zhang F, Ding J, Zhang Y, Chen M, Ding ZW, van Loosdrecht MCM, Zeng RJ (2013b) Fatty acids production from hydrogen and carbon dioxide by mixed culture in the membrane biofilm reactor. Water Res 47:6122–6129

    CAS  Google Scholar 

  • Zhang F, Zhang Y, Chen M, van Loosdrecht MCM, Zeng RJ (2013c) A modified metabolic model for mixed culture fermentation with energy conserving electron bifurcation reaction and metabolite transport energy. Biotechnol Bioeng 110:1884–1894

    CAS  Google Scholar 

  • Zhang F, Zhang Y, Ding Y, Dai K, van Loosdrecht MCM, Zeng RJ (2014) Stable acetate production in extreme-thermophilic (70 °C) mixed culture fermentation by selective enrichment of hydrogenotrophic methanogens. Sci Rep. doi:10.1038/srep05268

    Google Scholar 

  • Zhao Y, Chen Y, Zhang D, Zhu X (2010) Waste activated sludge fermentation for hydrogen production enhanced by anaerobic process improvement and acetobacteria inhibition: the role of fermentation pH. Environ Sci Technol 44:3317–3323

    CAS  Google Scholar 

  • Zheng H, O’Sullivan C, Mereddy R, Zeng R, Duke M, Clarke W (2010) Experimental and theoretical investigation of diffusion process in membrane anaerobic reactor for bio-hydrogen production. Int J Hydrogen Energy 35:5301–5311

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from Masdar Institute, to help fulfill the vision of the late President Sheikh Zayed Bin Sultan Al Nahyan for sustainable development and empowerment of the United Arab Emirates and humankind, funding project 2GBIONRG (12KAMA4). The authors would like to acknowledge Kevin Garvey, Academic Writing Lecturer at Masdar Institute for the manuscript language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan-Rodrigo Bastidas-Oyanedel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastidas-Oyanedel, JR., Bonk, F., Thomsen, M.H. et al. Dark fermentation biorefinery in the present and future (bio)chemical industry. Rev Environ Sci Biotechnol 14, 473–498 (2015). https://doi.org/10.1007/s11157-015-9369-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11157-015-9369-3

Keywords

Navigation