Skip to main content

Advertisement

Log in

The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Endometriosis and polycystic ovary syndrome (PCOS) are two common female reproductive disorders with a significant impact on the health and quality of life of women affected. A novel hypothesis by evolutionary biologists suggested that these two diseases are inversely related to one another, representing a pair of diametrical diseases in terms of opposite alterations in reproductive physiological processes but also contrasting phenotypic traits. However, to fully explain the phenotypic features observed in women with these conditions, we need to establish a potential nexus system between the reproductive system and general biological functions. The recent discovery of kisspeptin as pivotal mediator of internal and external inputs on the hypothalamic–pituitary–gonadal axis has led to a new understanding of the neuroendocrine upstream regulation of the human reproductive system. In this review, we summarize the current knowledge on the physiological roles of kisspeptin in human reproduction, as well as its involvement in complex biological functions such as metabolism, inflammation and pain sensitivity. Importantly, these functions are known to be dysregulated in both PCOS and endometriosis. Within the evolving scientific field of “kisspeptinology”, we critically discuss the clinical relevance of these discoveries and their potential translational applications in endometriosis and PCOS. By exploring the possibilities of manipulating this complex signaling system, we aim to pave the way for novel targeted therapies in these reproductive diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCOS:

Polycystic ovary syndrome

HPG:

Hypothalamic–pituitary–gonadal

KP:

Kisspeptin

GnRH:

Gonadotropin Releasing Hormone

SANRA:

Scale for the Assessment of Narrative Review Articles

KPR:

Kisspeptin receptor

KISS1:

Kisspeptin (gene)

KISS1R:

Kisspeptin receptor (gene)

RF-amide peptide:

Arginine-Phenylalanine amide peptide (sequence at C-terminus)

GPR54:

G protein-coupled receptor 54

PLC:

Phospholipase C

DAG:

Diacylglycerol

IP3:

Inositol-(1,4,5)-triphosphate

LH:

Luteinizing hormone

FSH:

Follicle stimulating hormone

KNDy:

Kisspeptin-Neurokinin B-Dynorphin neurons

NKB:

Neurokinin B

E2:

Estradiol

POA:

Preoptic area

POI:

Premature ovarian insufficiency

AMH:

Anti-Mullerian hormone

KO:

Knockout

GCs:

Granulosa cells,

CCs:

Cumulus cells

ESCs:

Endometrial stromal cells

LIF:

Leukemia inhibitory factor

MMPs:

Matrix metalloproteinases

VEGFA:

Vascular endothelial growth factor A

BMI:

Body mass index

EP:

Ectopic pregnancy

PTB:

Preterm birth

FGR:

Fetal growth restriction

HDP:

Hypertensive disorders of pregnancy

GDM:

Gestational diabetes mellitus

GTD:

Gestational trophoblastic disease

CH:

Chronic hypertension

PIH:

Pregnancy induced hypertension

PE:

Pre-eclampsia

GSIS:

Glucose‐stimulated insulin secretion

LPS:

Lipopolysaccharide

TNF:

Tumor necrosis factor

WHR:

Waist-to-hip ratio

NK3Ra:

Neurokinin-3-receptor antagonists

BBB:

Blood-brain-barrier

References

  1. Dinsdale NL, Crespi BJ. Endometriosis and polycystic ovary syndrome are diametric disorders. Evol Appl. 2021;14(7):1693–715. https://doi.org/10.1111/eva.13244.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dinsdale N, Nepomnaschy P, Crespi B. The evolutionary biology of endometriosis. Evol Med Public Health. 2021;9(1):174–91. https://doi.org/10.1093/emph/eoab008.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fabozzi G, Rebuzzini P, Cimadomo D, Allori M, Franzago M, Stuppia L, Garagna S, Ubaldi F, Zuccotti M, Rienzi L. Endocrine-disrupting chemicals, gut microbiota, and human (in)Fertility—It is time to consider the triad. Cells. 2022;11(21):3335. https://doi.org/10.3390/cells11213335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fontana R, Torre SD. The deep correlation between energy metabolism and reproduction: A view on the effects of nutrition for women fertility. Nutrients. 2016;8(2):87. https://doi.org/10.3390/nu8020087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujiwara T, Ono M, Mieda M, Yoshikawa H, Nakata R, Daikoku T, Sekizuka-Kagami N, Maida Y, Ando H, Fujiwara H. Adolescent dietary habit-induced obstetric and gynecologic disease (ADHOGD) as a new Hypothesis—Possible involvement of clock system. Nutrients. 2020;12(5):1294. https://doi.org/10.3390/nu12051294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shao S, Zhao H, Lu Z, Lei X, Zhang Y. Circadian rhythms within the female HPG axis: From physiology to etiology. Endocrinolog. 2021;162(8):bqab117. https://doi.org/10.1210/endocr/bqab117.

    Article  CAS  Google Scholar 

  7. de Roux N, Genin E, Carel J, Matsuda F, Chaussain J, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci USA. 2003;100(19):10972–6. https://doi.org/10.1073/pnas.1834399100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, Bo-Abbas Y, Kuohung W, Schwinof KM, Hendrick AG, Zahn D, Dixon J, Kaiser UB, Slaugenhaupt SA, Gusella JF, O’Rahilly S, Carlton MB, Crowley WF Jr, Aparicio SA, Colledge WH. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27. https://doi.org/10.1056/NEJMoa035322.

    Article  CAS  PubMed  Google Scholar 

  9. Skorupskaite K, George JT, Anderson RA. The kisspeptin-GnRH pathway in human reproductive health and disease. Hum Reprod Update. 2014;20(4):485–500. https://doi.org/10.1093/humupd/dmu009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M. Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiol Rev. 2012;92(3):1235–316. https://doi.org/10.1152/physrev.00037.2010.

    Article  CAS  PubMed  Google Scholar 

  11. Cejudo Roman A, Pinto FM, Dorta I, Almeida TA, Hernández M, Illanes M, Tena-Sempere M, Candenas L. Analysis of the expression of neurokinin B, kisspeptin, and their cognate receptors NK3R and KISS1R in the human female genital tract. Fertil Steril. 2012;97(5):1213–9. https://doi.org/10.1016/j.fertnstert.2012.02.021.

    Article  CAS  PubMed  Google Scholar 

  12. Masumi S, Lee EB, Dilower I, Upadhyaya S, Chakravarthi VP, Fields PE, Rumi MAK. The role of Kisspeptin signaling in Oocyte maturation. Front Endocrinol (Lausanne). 2022;13:917464. https://doi.org/10.3389/fendo.2022.917464.

    Article  PubMed  Google Scholar 

  13. León S, Fernandois D, Sull A, Sull J, Calder M, Hayashi K, Bhattacharya M, Power S, Vilos GA, Vilos AG, Tena-Sempere M, Babwah AV. Beyond the brain-Peripheral kisspeptin signaling is essential for promoting endometrial gland development and function. Sci Rep. 2016;6:29073. https://doi.org/10.1038/srep29073.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Hu K, Chang H, Zhao H, Yu Y, Li R, Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update. 2019;25(3):326–43. https://doi.org/10.1093/humupd/dmy046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Millar RP, Newton CL. Current and future applications of GnRH, kisspeptin and neurokinin B analogues. Nat Rev Endocrinol. 2013;9(8):451–66. https://doi.org/10.1038/nrendo.2013.120.

    Article  CAS  PubMed  Google Scholar 

  16. Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of inflammation on female gonadotropin-releasing hormone (GnRH) neurons: Mechanisms and consequences. Int J Mol Sci. 2020;21(2):529. https://doi.org/10.3390/ijms21020529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crespi B. Variation among human populations in endometriosis and PCOS A test of the inverse comorbidity model. Evol Med Public Health. 2021;9(1):295–310. https://doi.org/10.1093/emph/eoab029.

    Article  MathSciNet  PubMed  PubMed Central  Google Scholar 

  18. Lehman MN, Coolen LM, Steiner RA, Neal-Perry G, Wang L, Moenter SM, Moore AM, Goodman RL, Yeo S-, Padilla SL, Kauffman AS, Garcia J, Kelly MJ, Clarkson J, Radovick S, Babwah AV, Leon S, Tena-Sempere M, Comninos AN, Seminara S, Dhillo WS, Levine J, Terasawa E, Negron A, Navarro VM, Herbison AE. The 3rd world conference on kisspeptin, “Kisspeptin 2017: Brain and beyond”: Unresolved questions, challenges and future directions for the field. J Neuroendocrinol. 2018:e12600. https://doi.org/10.1111/jne.12600.

  19. Baethge C, Goldbeck-Wood S, Mertens S. SANRA-a scale for the quality assessment of narrative review articles. Res Integr Peer Rev. 2019;4:5. https://doi.org/10.1186/s41073-019-0064-8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dockray GJ. The expanding family of -RFamide peptides and their effects on feeding behaviour. Exp Physiol. 2004;89(3):229–35. https://doi.org/10.1113/expphysiol.2004.027169.

    Article  CAS  PubMed  Google Scholar 

  21. Lee J, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, Welch DR. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7. https://doi.org/10.1093/jnci/88.23.1731.

    Article  CAS  PubMed  Google Scholar 

  22. West A, Vojta PJ, Welch DR, Weissman BE. Chromosome localization and genomic structure of the KiSS-1 metastasis suppressor gene (KISS1). Genomics. 1998;54(1):145–8. https://doi.org/10.1006/geno.1998.5566.

    Article  CAS  PubMed  Google Scholar 

  23. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, Terao Y, Kumano S, Takatsu Y, Masuda Y, Ishibashi Y, Watanabe T, Asada M, Yamada T, Suenaga M, Kitada C, Usuki S, Kurokawa T, Onda H, Nishimura O, Fujino M. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7. https://doi.org/10.1038/35079135.

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden J, Le Poul E, Brézillon S, Tyldesley R, Suarez-Huerta N, Vandeput F, Blanpain C, Schiffmann SN, Vassart G, Parmentier M. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6. https://doi.org/10.1074/jbc.M104847200.

    Article  CAS  PubMed  Google Scholar 

  25. Gottsch ML, Clifton DK, Steiner RA. From KISS1 to kisspeptins: An historical perspective and suggested nomenclature. Peptides. 2009;30(1):4–9. https://doi.org/10.1016/j.peptides.2008.06.016.

    Article  CAS  PubMed  Google Scholar 

  26. Navenot JM, Fujii N, Peiper SC. KiSS1 metastasis suppressor gene product induces suppression of tyrosine kinase receptor signaling to Akt, tumor necrosis factor family ligand expression, and apoptosis. Mol Pharmacol. 2009;75(5):1074–83. https://doi.org/10.1124/mol.108.054270.

    Article  CAS  PubMed  Google Scholar 

  27. Bai D, Ueno L, Vogt PK. Akt-mediated regulation of NFkappaB and the essentialness of NFkappaB for the oncogenicity of PI3K and Akt. Int J Cancer. 2009;125(12):2863–70. https://doi.org/10.1002/ijc.24748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lu J, Wang Z, Cao J, Chen Y, Dong Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod Biol Endocrinol. 2018;16(1):80. https://doi.org/10.1186/s12958-018-0391-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jeong K, Kaiser UB. Chapter 31 - Gonadotropin-Releasing Hormone Regulation of Gonadotropin Biosynthesis and Secretion. In: Neill JD, editor. Knobil and Neill’s Physiology of Reproduction. 3rd ed. Elsevier: Academic press; 2006. p. 1635–701.

    Chapter  Google Scholar 

  30. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology. 2008;149(9):4605–14. https://doi.org/10.1210/en.2008-0321.

    Article  CAS  PubMed  Google Scholar 

  31. Millar RP, Roseweir AK, Tello JA, Anderson RA, George JT, Morgan K, Pawson AJ. Kisspeptin antagonists: Unraveling the role of kisspeptin in reproductive physiology. Brain Res. 2010;1364:81–9. https://doi.org/10.1016/j.brainres.2010.09.044.

    Article  CAS  PubMed  Google Scholar 

  32. Roseweir AK, Kauffman AS, Smith JT, Guerriero KA, Morgan K, Pielecka-Fortuna J, Pineda R, Gottsch ML, Tena-Sempere M, Moenter SM, Terasawa E, Clarke IJ, Steiner RA, Millar RP. Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. J Neurosci. 2009;29(12):3920–9. https://doi.org/10.1523/JNEUROSCI.5740-08.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Silveira LG, Noel SD, Silveira-Neto AP, Abreu AP, Brito VN, Santos MG, Bianco SDC, Kuohung W, Xu S, Gryngarten M, Escobar ME, Arnhold IJP, Mendonca BB, Kaiser UB, Latronico AC. Mutations of the KISS1 gene in disorders of puberty. J Clin Endocrinol Metab. 2010;95(5):2276–80. https://doi.org/10.1210/jc.2009-2421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Teles MG, Bianco SDC, Brito VN, Trarbach EB, Kuohung W, Xu S, Seminara SB, Mendonca BB, Kaiser UB, Latronico AC. A GPR54-activating mutation in a patient with central precocious puberty. N Engl J Med. 2008;358(7):709–15. https://doi.org/10.1056/NEJMoa073443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Constantin S, Bjelobaba I, Stojilkovic SS. Pituitary gonadotroph-specific patterns of gene expression and hormone secretion. Curr Opin Pharmacol. 2022;66:102274. https://doi.org/10.1016/j.coph.2022.102274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dhillo WS, Chaudhri OB, Thompson EL, Murphy KG, Patterson M, Ramachandran R, Nijher GK, Amber V, Kokkinos A, Donaldson M, Ghatei MA, Bloom SR. Kisspeptin-54 stimulates gonadotropin release most potently during the preovulatory phase of the menstrual cycle in women. J Clin Endocrinol Metab. 2007;92(10):3958–66. https://doi.org/10.1210/jc.2007-1116.

    Article  CAS  PubMed  Google Scholar 

  37. Narayanaswamy S, Jayasena CN, Ng N, Ratnasabapathy R, Prague JK, Papadopoulou D, Abbara A, Comninos AN, Bassett P, Bloom SR, Veldhuis JD, Dhillo WS. Subcutaneous infusion of kisspeptin-54 stimulates gonadotrophin release in women and the response correlates with basal oestradiol levels. Clin Endocrinol (Oxf). 2016;84(6):939–45. https://doi.org/10.1111/cen.12977.

    Article  CAS  PubMed  Google Scholar 

  38. Jayasena CN, Comninos AN, Veldhuis JD, Misra S, Abbara A, Izzi-Engbeaya C, Donaldson M, Ghatei MA, Bloom SR, Dhillo WS. A single injection of kisspeptin-54 temporarily increases luteinizing hormone pulsatility in healthy women. Clin Endocrinol (Oxf). 2013;79(4):558–63. https://doi.org/10.1111/cen.12179.

    Article  CAS  PubMed  Google Scholar 

  39. Navarro VM, Castellano JM, Fernández-Fernández R, Tovar S, Roa J, Mayen A, Nogueiras R, Vazquez MJ, Barreiro ML, Magni P, Aguilar E, Dieguez C, Pinilla L, Tena-Sempere M. Characterization of the potent luteinizing hormone-releasing activity of KiSS-1 peptide, the natural ligand of GPR54. Endocrinology. 2005;146(1):156–63. https://doi.org/10.1210/en.2004-0836.

    Article  CAS  PubMed  Google Scholar 

  40. Gutiérrez-Pascual E, Martínez-Fuentes AJ, Pinilla L, Tena-Sempere M, Malagón MM, Castaño JP. Direct pituitary effects of kisspeptin: Activation of gonadotrophs and somatotrophs and stimulation of luteinising hormone and growth hormone secretion. J Neuroendocrinol. 2007;19(7):521–30. https://doi.org/10.1111/j.1365-2826.2007.01558.x.

    Article  CAS  PubMed  Google Scholar 

  41. Prashar V, Arora T, Singh R, Sharma A, Parkash J. Hypothalamic kisspeptin neurons: Integral elements of the GnRH system. Reprod Sci. 2023;30(3):802–22. https://doi.org/10.1007/s43032-022-01027-5.

    Article  CAS  PubMed  Google Scholar 

  42. Rometo AM, Krajewski SJ, Lou Voytko M, Rance NE. Hypertrophy and increased kisspeptin gene expression in the hypothalamic infundibular nucleus of postmenopausal women and ovariectomized monkeys. J Clin Endocrinol Metab. 2007;92(7):2744–50. https://doi.org/10.1210/jc.2007-0553.

    Article  CAS  PubMed  Google Scholar 

  43. Hrabovszky E, Ciofi P, Vida B, Horvath MC, Keller E, Caraty A, Bloom SR, Ghatei MA, Dhillo WS, Liposits Z, Kallo I. The kisspeptin system of the human hypothalamus: Sexual dimorphism and relationship with gonadotropin-releasing hormone and neurokinin B neurons. Eur J Neurosci. 2010;31(11):1984–98. https://doi.org/10.1111/j.1460-9568.2010.07239.x.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng G, Coolen LM, Padmanabhan V, Goodman RL, Lehman MN. The kisspeptin/neurokinin B/dynorphin (KNDy) cell population of the arcuate nucleus: Sex differences and effects of prenatal testosterone in sheep. Endocrinology. 2010;151(1):301–11. https://doi.org/10.1210/en.2009-0541.

    Article  CAS  PubMed  Google Scholar 

  45. Moore AM, Coolen LM, Porter DT, Goodman RL, Lehman MN. KNDy cells revisited. Endocrinology. 2018;159(9):3219–34. https://doi.org/10.1210/en.2018-00389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Uenoyama Y, Nagae M, Tsuchida H, Inoue N, Tsukamura H. Role of KNDy neurons expressing kisspeptin, neurokinin B, and dynorphin A as a GnRH pulse generator controlling mammalian reproduction. Front Endocrinol (Lausanne). 2021;12:724632. https://doi.org/10.3389/fendo.2021.724632.

    Article  PubMed  Google Scholar 

  47. Goodman RL, Coolen LM, Anderson GM, Hardy SL, Valent M, Connors JM, Fitzgerald ME, Lehman MN. Evidence that dynorphin plays a major role in mediating progesterone negative feedback on gonadotropin-releasing hormone neurons in sheep. Endocrinology. 2004;145(6):2959–67. https://doi.org/10.1210/en.2003-1305.

    Article  CAS  PubMed  Google Scholar 

  48. Oakley AE, Clifton DK, Steiner RA. Kisspeptin signaling in the brain. Endocr Rev. 2009;30(6):713–43. https://doi.org/10.1210/er.2009-0005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang C, Bosch MA, Qiu J, Rønnekleiv OK, Kelly MJ. 17β-estradiol increases persistent na+ current and excitability of AVPV/PeN Kiss1 neurons in female mice. Mol Endocrinol. 2015;29(4):518–27. https://doi.org/10.1210/me.2014-1392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. McCartney CR, Campbell RE. Abnormal GnRH pulsatility in polycystic ovary syndrome: Recent insights. Curr Opin Endocr Metab Res. 2020;12:78–84. https://doi.org/10.1016/j.coemr.2020.04.005.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Burt Solorzano CM, Beller JP, Abshire MY, Collins JS, McCartney CR, Marshall JC. Neuroendocrine dysfunction in polycystic ovary syndrome. Steroids. 2012;77(4):332–7. https://doi.org/10.1016/j.steroids.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  52. Coyle C, Campbell RE. Pathological pulses in PCOS. Mol Cell Endocrinol. 2019;498:110561. https://doi.org/10.1016/j.mce.2019.110561.

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Li R, Ouyang N, Dai K, Yuan P, Zheng L, Wang W. Investigating the impact of local inflammation on granulosa cells and follicular development in women with ovarian endometriosis. Fertil Steril. 2019;112(5):882-891.e1. https://doi.org/10.1016/j.fertnstert.2019.07.007.

    Article  CAS  PubMed  Google Scholar 

  54. González-Fernández R, Peña Ó, Hernández J, Martín-Vasallo P, Palumbo A, Ávila J. Patients with endometriosis and patients with poor ovarian reserve have abnormal follicle-stimulating hormone receptor signaling pathways. Fertil Steril. 2011;95(7):2373–8. https://doi.org/10.1016/j.fertnstert.2011.03.030.

    Article  CAS  PubMed  Google Scholar 

  55. Chang RJ, Cook-Andersen H. Disordered follicle development. Mol Cell Endocrinol. 2013;373(1–2):51–60. https://doi.org/10.1016/j.mce.2012.07.011.

    Article  CAS  PubMed  Google Scholar 

  56. Franks S, Stark J, Hardy K. Follicle dynamics and anovulation in polycystic ovary syndrome. Hum Reprod Update. 2008;14(4):367–78. https://doi.org/10.1093/humupd/dmn015.

    Article  CAS  PubMed  Google Scholar 

  57. Cimino I, Casoni F, Liu X, Messina A, Parkash J, Jamin SP, Catteau-Jonard S, Collier F, Baroncini M, Dewailly D, Pigny P, Prescott M, Campbell R, Herbison AE, Prevot V, Giacobini P. Novel role for anti-Müllerian hormone in the regulation of GnRH neuron excitability and hormone secretion. Nat Commun. 2016;7:10055. https://doi.org/10.1038/ncomms10055.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  58. Garg D, Tal R. The role of AMH in the pathophysiology of polycystic ovarian syndrome. Reprod Biomed Online. 2016;33(1):15–28. https://doi.org/10.1016/j.rbmo.2016.04.007.

    Article  CAS  PubMed  Google Scholar 

  59. Owens LA, Kristensen SG, Lerner A, Christopoulos G, Lavery S, Hanyaloglu AC, Hardy K, Yding Andersen C, Franks S. Gene expression in granulosa cells from small antral follicles from women with or without polycystic ovaries. J Clin Endocrinol Metab. 2019;104(12):6182–92. https://doi.org/10.1210/jc.2019-00780.

    Article  PubMed  PubMed Central  Google Scholar 

  60. de Carvalho BR, de Sá Rosa ACJ, Rosa-e-Silva JC, dos Reis RM, Ferriani RA, Silva-de-Sá MF. Increased basal FSH levels as predictors of low-quality follicles in infertile women with endometriosis. Int J Gynaecol Obstet. 2010;110(3):208–12. https://doi.org/10.1016/j.ijgo.2010.03.033.

    Article  CAS  PubMed  Google Scholar 

  61. Romanski PA, Brady PC, Farland LV, Thomas AM, Hornstein MD. The effect of endometriosis on the antimüllerian hormone level in the infertile population. J Assist Reprod Genet. 2019;36(6):1179–84. https://doi.org/10.1007/s10815-019-01450-9.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dong Z, An J, Xie X, Wang Z, Sun P. Preoperative serum anti-müllerian hormone level is a potential predictor of ovarian endometrioma severity and postoperative fertility. Eur J Obstet Gynecol Reprod Biol. 2019;240:113–20. https://doi.org/10.1016/j.ejogrb.2019.06.024.

    Article  CAS  PubMed  Google Scholar 

  63. Rönnberg L, Kauppila A, Rajaniemi H. Luteinizing hormone receptor disorder in endometriosis. Fertil Steril. 1984;42(1):64–8. https://doi.org/10.1016/S0015-0282(16)47959-8.

    Article  PubMed  Google Scholar 

  64. Cahill DJ, Hull MGR. Pituitary–ovarian dysfunction and endometriosis. Hum Reprod Update. 2000;6(1):56–66. https://doi.org/10.1093/humupd/6.1.56.

    Article  CAS  PubMed  Google Scholar 

  65. Moore AM, Lohr DB, Coolen LM, Lehman MN. Prenatal androgen exposure alters KNDy neurons and their afferent network in a model of polycystic ovarian syndrome. Endocrinology. 2021;162(11):bqab158. https://doi.org/10.1210/endocr/bqab158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Osuka S, Iwase A, Nakahara T, Kondo M, Saito A, Bayasula, Nakamura T, Takikawa S, Goto M, Kotani T, Kikkawa F. Kisspeptin in the hypothalamus of two rat models of polycystic ovary syndrome. Endocrinology. 2016;158(2):en.2016–1333. https://doi.org/10.1210/en.2016-1333.

    Article  CAS  Google Scholar 

  67. Matsuzaki T, Tungalagsuvd A, Iwasa T, Munkhzaya M, Yanagihara R, Tokui T, et al. Kisspeptin mRNA expression is increased in the posterior hypothalamus in the rat model of polycystic ovary syndrome. Endocr J. 2017;64(1):7–14. https://doi.org/10.1507/endocrj.EJ16-0282.

    Article  CAS  PubMed  Google Scholar 

  68. Cernea M, Padmanabhan V, Goodman RL, Coolen LM, Lehman MN. Prenatal testosterone treatment leads to changes in the morphology of KNDy neurons, their inputs, and projections to GnRH cells in female sheep. Endocrinology. 2015;156(9):3277–91. https://doi.org/10.1210/en.2014-1609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Filippou P, Homburg R. Is foetal hyperexposure to androgens a cause of PCOS? Hum Reprod Update. 2017;23(4):421–32. https://doi.org/10.1093/humupd/dmx013.

    Article  CAS  PubMed  Google Scholar 

  70. Esparza LA, Schafer D, Ho BS, Thackray VG, Kauffman AS. Hyperactive LH pulses and elevated kisspeptin and NKB gene expression in the arcuate nucleus of a PCOS mouse model. Endocrinology. 2020;161(4):1. https://doi.org/10.1210/endocr/bqaa018.

    Article  CAS  Google Scholar 

  71. León S, Barroso A, Vázquez MJ, García-Galiano D, Manfredi-Lozano M, Ruiz-Pino F, Heras V, Romero-Ruiz A, Roa J, Schutz G, Kirilov M, Gaytan F, Pinilla L, Tena-Sempere M. Direct actions of Kisspeptins on GnRH neurons permit attainment of fertility but are insufficient to fully preserve gonadotropic axis activity. Sci Rep. 2016;6:19206. https://doi.org/10.1038/srep19206.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  72. Terao Y, Kumano S, Takatsu Y, Hattori M, Nishimura A, Ohtaki T, Shintani Y. Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochim Biophys Acta. 2004;1678(2–3):102–10. https://doi.org/10.1016/j.bbaexp.2004.02.005.

    Article  CAS  PubMed  Google Scholar 

  73. Castellano JM, Gaytan M, Roa J, Vigo E, Navarro VM, Bellido C, Dieguez C, Aguilar E, Sánchez-Criado JE, Pellicer A, Pinilla L, Gaytan F, Tena-Sempere M. Expression of KiSS-1 in rat ovary: Putative local regulator of ovulation? Endocrinology. 2006;147(10):4852–62. https://doi.org/10.1210/en.2006-0117.

    Article  CAS  PubMed  Google Scholar 

  74. García-Ortega J, Pinto FM, Prados N, Bello AR, Almeida TA, Fernández-Sánchez M, Candenas L. Expression of tachykinins and tachykinin receptors and interaction with kisspeptin in human granulosa and cumulus Cells. Biol Reprod. 2016;94(6):1. https://doi.org/10.1095/biolreprod.116.139881.

    Article  CAS  Google Scholar 

  75. García-Ortega J, Pinto FM, Fernández-Sánchez M, Prados N, Cejudo-Román A, Almeida TA, Hernández M, Romero M, Tena-Sempere M, Candenas L. Expression of neurokinin B/NK3 receptor and kisspeptin/KISS1 receptor in human granulosa cells. Hum Reprod. 2014;29(12):2736–46. https://doi.org/10.1093/humrep/deu247.

    Article  CAS  PubMed  Google Scholar 

  76. Hu K, Zhao H, Chang H, Yu Y, Qiao J. Kisspeptin/kisspeptin receptor system in the ovary. Front Endocrinol (Lausanne). 2017;8:365. https://doi.org/10.3389/fendo.2017.00365.

    Article  PubMed  Google Scholar 

  77. Shahed A, Young KA. Differential ovarian expression of KiSS-1 and GPR-54 during the estrous cycle and photoperiod induced recrudescence in Siberian hamsters (Phodopus sungorus). Mol Reprod Dev. 2009;76(5):444–52. https://doi.org/10.1002/mrd.20972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rehman R, Zafar A, Ali AA, Baig M, Alam F. Impact of serum and follicular fluid kisspeptin and estradiol on oocyte maturity and endometrial thickness among unexplained infertile females during ICSI. PLoS ONE. 2020;15(10):e0239142. https://doi.org/10.1371/journal.pone.0239142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Merhi Z, Thornton K, Bonney E, Cipolla MJ, Charron MJ, Buyuk E. Ovarian kisspeptin expression is related to age and to monocyte chemoattractant protein-1. J Assist Reprod Genet. 2016;33(4):535–43. https://doi.org/10.1007/s10815-016-0672-x.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Babayev E, Duncan FE. Age-associated changes in cumulus cells and follicular fluid: The local oocyte microenvironment as a determinant of gamete quality. Biol Reprod. 2022;106(2):351–65. https://doi.org/10.1093/biolre/ioab241.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Gonnella F, Konstantinidou F, Di Berardino C, Capacchietti G, Peserico A, Russo V, Barboni B, Stuppia L, Gatta V. A systematic review of the effects of high-fat diet exposure on oocyte and follicular quality: A molecular point of view. Int J Mol Sci. 2022;23(16):8890. https://doi.org/10.3390/ijms23168890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mlyczyńska E, Kieżun M, Kurowska P, Dawid M, Pich K, Respekta N, Daudon M, Rytelewska E, Dobrzyń K, Kamińska B, Kamiński T, Smolińska N, Dupont J, Rak A. New aspects of corpus luteum regulation in physiological and pathological conditions: Involvement of adipokines and neuropeptides. Cells. 2022;11(6):957–1047. https://doi.org/10.3390/cells11060957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ruohonen ST, Gaytan F, Usseglio Gaudi A, Velasco I, Kukoricza K, Perdices-Lopez C, Franssen D, Guler I, Mehmood A, Elo LL, Ohlsson C, Poutanen M, Tena-Sempere M. Selective loss of kisspeptin signaling in oocytes causes progressive premature ovulatory failure. Hum Reprod. 2022;37(4):806–21. https://doi.org/10.1093/humrep/deab287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Baba T, Kang HS, Hosoe Y, Kharma B, Abiko K, Matsumura N, Hamanishi J, Yamaguchi K, Yoshioka Y, Koshiyama M, Mandai M, Murphy SK, Konishi I. Menstrual cyclic change of metastin/GPR54 in endometrium. Med Mol Morphol. 2015;48(2):76–84. https://doi.org/10.1007/s00795-014-0081-0.

    Article  CAS  PubMed  Google Scholar 

  85. Kang HS, Baba T, Mandai M, Matsumura N, Hamanishi J, Kharma B, Kondoh E, Yoshioka Y, Oishi S, Fujii N, Murphy SK, Konishi I. GPR54 is a target for suppression of metastasis in endometrial cancer. Mol Cancer Ther. 2011;10(4):580–90. https://doi.org/10.1158/1535-7163.MCT-10-0763.

    Article  CAS  PubMed  Google Scholar 

  86. Calder M, Chan Y, Raj R, Pampillo M, Elbert A, Noonan M, Gillio-Meina C, Caligioni C, Bérubé NG, Bhattacharya M, Watson AJ, Seminara SB, Babwah AV. Implantation failure in female Kiss1−/− mice is independent of their hypogonadic state and can be partially rescued by leukemia inhibitory factor. Endocrinology. 2014;155(8):3065–78. https://doi.org/10.1210/en.2013-1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Radovick S, Babwah AV. Regulation of pregnancy: Evidence for major roles by the uterine and placental kisspeptin/KISS1R signaling systems. Semin Reprod Med. 2019;37(4):182–90. https://doi.org/10.1055/s-0039-3400966.

    Article  CAS  PubMed  Google Scholar 

  88. Tsoutsouki J, Patel B, Comninos AN, Dhillo WS, Abbara A. Kisspeptin in the prediction of pregnancy complications. Front Endocrinol (Lausanne). 2022;13:942664. https://doi.org/10.3389/fendo.2022.942664.

    Article  PubMed  Google Scholar 

  89. Abbara A, Al-Memar M, Phylactou M, Kyriacou C, Eng PC, Nadir R, Izzi-Engbeaya C, Clarke SA, Mills EG, Daniels E, Huo L, Pacuszka E, Yang L, Patel B, Tan T, Bech P, Comninos AN, Fourie H, Kelsey TW, Bourne T, Dhillo WS. Performance of plasma kisspeptin as a biomarker for miscarriage improves with gestational age during the first trimester. Fertil Steril. 2021;116(3):809–19. https://doi.org/10.1016/j.fertnstert.2021.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Szydełko-Gorzkowicz M, Poniedziałek-Czajkowska E, Mierzyński R, Sotowski M, Leszczyńska-Gorzelak B. The role of kisspeptin in the pathogenesis of pregnancy complications: A narrative review. Int J Mol Sci. 2022;23(12):6611. https://doi.org/10.3390/ijms23126611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Levine RJ, Karumanchi SA. Circulating angiogenic factors in preeclampsia. Clin Obstet Gynecol. 2005;48(2):372–86. https://doi.org/10.1097/01.grf.0000160313.82606.d7.

    Article  PubMed  Google Scholar 

  92. Armstrong RA, Reynolds RM, Leask R, Shearing CH, Calder AA, Riley SC. Decreased serum levels of kisspeptin in early pregnancy are associated with intra-uterine growth restriction and pre-eclampsia. Prenat Diagn. 2009;29(10):982–5. https://doi.org/10.1002/pd.2328.

    Article  CAS  PubMed  Google Scholar 

  93. Abbara A, Al-Memar M, Phylactou M, Daniels E, Patel B, Eng PC, Nadir R, Izzi-Engbeaya C, Clarke SA, Mills EG, Hunjan T, Pacuszka E, Yang L, Bech P, Tan T, Comninos AN, Kelsey TW, Kyriacou C, Fourie H, Bourne T, Dhillo WS. Changes in circulating Kisspeptin levels during each trimester in women with antenatal complications. J Clin Endocrinol Metab. 2022;107(1):e71–83. https://doi.org/10.1210/clinem/dgab617.

    Article  PubMed  Google Scholar 

  94. Torricelli M, Galleri L, Voltolini C, Biliotti G, Florio P, De Bonis M, Petraglia F. Changes of placental kiss-1 mRNA expression and maternal/cord kisspeptin levels at preterm delivery. Reprod Sci. 2008;15(8):779–84. https://doi.org/10.1177/1933719108322442.

    Article  CAS  PubMed  Google Scholar 

  95. Wawrzkiewicz-Jałowiecka A, Kowalczyk K, Trybek P, Jarosz T, Radosz P, Setlak M, Madej P. In search of new Therapeutics—Molecular aspects of the PCOS pathophysiology: Genetics, hormones, metabolism and beyond. Int J Mol Sci. 2020;21(19):7054. https://doi.org/10.3390/ijms21197054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Tang R, Ding X, Zhu J. Kisspeptin and Polycystic Ovary Syndrome. Front Endocrinol (Lausanne). 2019;10:298. https://doi.org/10.3389/fendo.2019.00298.

    Article  PubMed  Google Scholar 

  97. Hu KL, Zhao H, Min Z, He Y, Li T, Zhen X, Ren Y, Chang HM, Yu Y, Li R. Increased expression of KISS1 and KISS1 receptor in human granulosa lutein cells-potential pathogenesis of polycystic ovary syndrome. Reprod Sci. 2019;26(11):1429–38. https://doi.org/10.1177/1933719118818899.

    Article  CAS  PubMed  Google Scholar 

  98. Blasco V, Pinto FM, Fernández-Atucha A, Prados N, Tena-Sempere M, Fernández-Sánchez M, Candenas L. Altered expression of the kisspeptin/KISS1R and neurokinin B/NK3R systems in mural granulosa and cumulus cells of patients with polycystic ovarian syndrome. J Assist Reprod Genet. 2019;36(1):113–20. https://doi.org/10.1007/s10815-018-1338-7.

    Article  PubMed  Google Scholar 

  99. Timologou A, Zafrakas MM, Grimbizis G, Miliaras D, Kotronis K, Stamatopoulos P, Tarlatzis BC. Immunohistochemical expression pattern of metastasis suppressors KAI1 and KISS1 in endometriosis and normal endometrium. Eur J Obstet Gynecol Reprod Biol. 2016;199:110–5. https://doi.org/10.1016/j.ejogrb.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  100. Abdelkareem AO, Alotaibi FT, AlKusayer GM, Ait-Allah AS, Rasheed SM, Helmy YA, Allaire C, Peng B, Yong PJ, Bedaiwy MA. Immunoreactivity of kisspeptin and kisspeptin receptor in eutopic and ectopic endometrial tissue of women with and without endometriosis. Reprod Sci. 2020;27(9):1731–41. https://doi.org/10.1007/s43032-020-00167-w.

    Article  CAS  PubMed  Google Scholar 

  101. Önal M, Karli P, Özdemir AZ, Kocaman A, Katirci Y, Çoban G, Nakişli GK, Civil Y, Avci B. Serum kisspeptin levels in deep-infiltrating, ovarian, and superficial endometriosis: A prospective observational study. Medicine (Baltimore). 2022;101(45):e31529. https://doi.org/10.1097/MD.0000000000031529.

    Article  CAS  PubMed  Google Scholar 

  102. Blasco V, Pinto FM, Fernández-Atucha A, González-Ravina C, Fernández-Sánchez M, Candenas L. Female infertility is associated with an altered expression of the neurokinin B/neurokinin B receptor and kisspeptin/kisspeptin receptor systems in ovarian granulosa and cumulus cells. Fertil Steril. 2020;114(4):869–78. https://doi.org/10.1016/j.fertnstert.2020.05.006.

    Article  CAS  PubMed  Google Scholar 

  103. Matsuzaki S, Ueda Y, Nagase Y, Matsuzaki S, Kakuda M, Kakuda S, Sakaguchi H, Hisa T, Kamiura S. Placenta accreta spectrum disorder complicated with endometriosis: Systematic review and meta-analysis. Biomedicines. 2022;10(2):390. https://doi.org/10.3390/biomedicines10020390.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Salmeri N, Farina A, Candiani M, Dolci C, Bonavina G, Poziello C, Viganò P, Cavoretto PI. Endometriosis and impaired placentation: A prospective cohort study comparing uterine arteries doppler pulsatility index in pregnancies of patients with and without moderate-severe disease. Diagnostics (Basel). 2022;12(5):1024. https://doi.org/10.3390/diagnostics12051024.

    Article  PubMed  Google Scholar 

  105. Kelley AS, Smith YR, Padmanabhan V. A narrative review of placental contribution to adverse pregnancy outcomes in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2019;104(11):5299–315. https://doi.org/10.1210/jc.2019-00383.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Palomba S, Piltonen TT, Giudice LC. Endometrial function in women with polycystic ovary syndrome: A comprehensive review. Hum Reprod Update. 2021;27(3):584–618. https://doi.org/10.1093/humupd/dmaa051.

    Article  CAS  PubMed  Google Scholar 

  107. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, Szekeres PG, Sarau HM, Chambers JK, Murdock P, Steplewski K, Shabon U, Miller JE, Middleton SE, Darker JG, Larminie CG, Wilson S, Bergsma DJ, Emson P, Faull R, Philpott KL, Harrison DC. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75. https://doi.org/10.1074/jbc.M102743200.

    Article  CAS  PubMed  Google Scholar 

  108. Navarro VM. Metabolic regulation of kisspeptin — the link between energy balance and reproduction. Nat Rev Endocrinol. 2020;16(8):407–20. https://doi.org/10.1038/s41574-020-0363-7.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Reinehr T, Roth CL. Is there a causal relationship between obesity and puberty? Lancet Child Adolesc Health. 2019;3(1):44–54. https://doi.org/10.1016/S2352-4642(18)30306-7.

    Article  PubMed  Google Scholar 

  110. Itriyeva K. The effects of obesity on the menstrual cycle. Curr Probl Pediatr Adolesc Health Care. 2022;52(8):101241. https://doi.org/10.1016/j.cppeds.2022.101241.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Tolson KP, Garcia C, Yen S, Simonds S, Stefanidis A, Lawrence A, Smith JT, Kauffman AS. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest. 2014;124(7):3075–9. https://doi.org/10.1172/JCI71075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Castellano JM, Navarro VM, Roa J, Pineda R, Sánchez-Garrido MA, García-Galiano D, Vigo E, Dieguez C, Aguilar E, Pinilla L, Tena-Sempere M. Alterations in hypothalamic KiSS-1 system in experimental diabetes: Early changes and functional consequences. Endocrinology. 2009;150(2):784–94. https://doi.org/10.1210/en.2008-0849.

    Article  CAS  PubMed  Google Scholar 

  113. Plum L, Belgardt BF, Brüning JC. Central insulin action in energy and glucose homeostasis. J Clin Invest. 2006;116(7):1761–6. https://doi.org/10.1172/JCI29063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Hauge-Evans AC, Richardson CC, Milne HM, Christie MR, Persaud SJ, Jones PM. A role for kisspeptin in islet function. Diabetologia. 2006;49(9):2131–5. https://doi.org/10.1007/s00125-006-0343-z.

    Article  CAS  PubMed  Google Scholar 

  115. Bowe JE, Hill TG, Hunt KF, Smith LIF, Simpson SJS, Amiel SA, Jones PM. A role for placental kisspeptin in β cell adaptation to pregnancy. JCI Insight. 2019;4(20):e124540. https://doi.org/10.1172/jci.insight.124540.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Bowe JE, Foot VL, Amiel SA, Huang GC, Lamb M, Lakey J, Jones PM, Persaud SJ. GPR54 peptide agonists stimulate insulin secretion from murine, porcine and human islets. Islets. 2012;4(1):20–3. https://doi.org/10.4161/isl.18261.

    Article  PubMed  Google Scholar 

  117. Vikman J, Ahrén B. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes Obes Metab. 2009;11(Suppl 4):197–201. https://doi.org/10.1111/j.1463-1326.2009.01116.x.

    Article  CAS  PubMed  Google Scholar 

  118. Chen J, Fu R, Cui Y, Pan J, Li Y, Zhang X, Evans SM, Cui S, Liu J. LIM-homeodomain transcription factor isl-1 mediates kisspeptin’s effect on insulin secretion in mice. Mol Endocrinol. 2014;28(8):1276–90. https://doi.org/10.1210/me.2013-1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Izzi-Engbeaya C, Comninos AN, Clarke SA, Jomard A, Yang L, Jones S, Abbara A, Narayanaswamy S, Eng PC, Papadopoulou D, Prague JK, Bech P, Godsland IF, Bassett P, Sands C, Camuzeaux S, Gomez-Romero M, Pearce JTM, Lewis MR, Holmes E, Nicholson JK, Tan T, Ratnasabapathy R, Hu M, Carrat G, Piemonti L, Bugliani M, Marchetti P, Johnson PR, Hughes SJ, James Shapiro AM, Rutter GA, Dhillo WS. The effects of kisspeptin on β-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab. 2018;20(12):2800–10. https://doi.org/10.1111/dom.13460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, Fujino M. Dramatic elevation of plasma metastin concentrations in human pregnancy: Metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab. 2003;88(2):914–9. https://doi.org/10.1210/jc.2002-021235.

    Article  CAS  PubMed  Google Scholar 

  121. Kołodziejski PA, Pruszyńska-Oszmałek E, Korek E, Sassek M, Szczepankiewicz D, Kaczmarek P, Nogowski L, Maćkowiak P, Nowak KW, Krauss H, Strowski MZ. Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol Res. 2018;67(1):45–56. https://doi.org/10.33549/physiolres.933467.

    Article  PubMed  Google Scholar 

  122. Hestiantoro A, Astuti BPK, Muharam R, Pratama G, Witjaksono F, Wiweko B. Dysregulation of Kisspeptin and Leptin, as Anorexigenic Agents, Plays Role in the Development of Obesity in Postmenopausal Women. Int J Endocrinol. 2019;2019:1347208. https://doi.org/10.1155/2019/1347208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. True C, Verma S, Grove KL, Smith MS. Cocaine- and amphetamine-regulated transcript is a potent stimulator of GnRH and kisspeptin cells and may contribute to negative energy balance-induced reproductive inhibition in females. Endocrinology. 2013;154(8):2821–32. https://doi.org/10.1210/en.2013-1156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Padilla SL, Qiu J, Nestor CC, Zhang C, Smith AW, Whiddon BB, Rønnekleiv OK, Kelly MJ, Palmiter RD. AgRP to Kiss1 neuron signaling links nutritional state and fertility. Proc Natl Acad Sci U S A. 2017;114(9):2413–8. https://doi.org/10.1073/pnas.1621065114.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  125. Smith JT, Acohido BV, Clifton DK, Steiner RA. KiSS-1 neurones are direct targets for leptin in the ob/ob mouse. J Neuroendocrinol. 2006;18(4):298–303. https://doi.org/10.1111/j.1365-2826.2006.01417.x.

    Article  CAS  PubMed  Google Scholar 

  126. Donato J, Cravo RM, Frazão R, Gautron L, Scott MM, Lachey J, Castro IA, Margatho LO, Lee S, Lee C, Richardson JA, Friedman J, Chua J, Streamson, Coppari R, Zigman JM, Elmquist JK, Elias CF. Leptin’s effect on puberty in mice is relayed by the ventral premammillary nucleus and does not require signaling in Kiss1 neurons. J Clin Invest. 2011;121(1):355–68. https://doi.org/10.1172/JCI45106.

    Article  PubMed  Google Scholar 

  127. Iwasa T, Matsuzaki T, Tungalagsuvd A, Munkhzaya M, Kawami T, Niki H, Kato T, Kuwahara A, Uemura H, Yasui T, Irahara M. Hypothalamic Kiss1 and RFRP gene expressions are changed by a high dose of lipopolysaccharide in female rats. Horm Behav. 2014;66(2):309–16. https://doi.org/10.1016/j.yhbeh.2014.06.007.

    Article  CAS  PubMed  Google Scholar 

  128. Lee CY, Li S, Li XF, Stalker DAE, Cooke C, Shao B, Kelestimur H, Henry BA, Conductier G, O’Byrne KT, Clarke IJ. Lipopolysaccharide reduces gonadotrophin-releasing hormone (GnRH) gene expression: Role of RFamide-related peptide-3 and kisspeptin. Reprod Fertil Dev. 2019;31(6):1134–43. https://doi.org/10.1071/RD18277.

    Article  CAS  PubMed  Google Scholar 

  129. Iwasa T, Matsuzaki T, Murakami M, Shimizu F, Kuwahara A, Yasui T, Irahara M. Decreased expression of kisspeptin mediates acute immune/inflammatory stress-induced suppression of gonadotropin secretion in female rat. J Endocrinol Invest. 2008;31(7):656–9. https://doi.org/10.1007/BF03345620.

    Article  CAS  PubMed  Google Scholar 

  130. Sarchielli E, Comeglio P, Squecco R, Ballerini L, Mello T, Guarnieri G, Idrizaj E, Mazzanti B, Vignozzi L, Gallina P, Maggi M, Vannelli GB, Morelli A. Tumor necrosis factor-α impairs kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. J Clin Endocrinol Metab. 2017;102(1):46–56. https://doi.org/10.1210/jc.2016-2115.

    Article  PubMed  Google Scholar 

  131. Fergani C, Routly JE, Jones DN, Pickavance LC, Smith RF, Dobson H. KNDy neurone activation prior to the LH surge of the ewe is disrupted by LPS. Reproduction. 2017;154(3):281–92. https://doi.org/10.1530/REP-17-0191.

    Article  CAS  PubMed  Google Scholar 

  132. Sato K, Shirai R, Hontani M, Shinooka R, Hasegawa A, Kichise T, Yamashita T, Yoshizawa H, Watanabe R, Matsuyama T, Ishibashi-Ueda H, Koba S, Kobayashi Y, Hirano T, Watanabe T. Potent vasoconstrictor kisspeptin-10 induces atherosclerotic plaque progression and instability: Reversal by its receptor GPR54 antagonist. J Am Heart Assoc. 2017;6(4):e005790. https://doi.org/10.1161/JAHA.117.005790.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Wang D, Wu Z, Zhao C, Yang X, Wei H, Liu M, Zhao J, Qian M, Li Z, Xiao J. KP-10/Gpr54 attenuates rheumatic arthritis through inactivating NF-κB and MAPK signaling in macrophages. Pharmacol Res. 2021;171:105496. https://doi.org/10.1016/j.phrs.2021.105496.

    Article  CAS  PubMed  Google Scholar 

  134. Akdag T, Uca AU, Altas M, Odabas FO, Aktas F. Level of kisspeptin-10 in patients with multiple sclerosis and the association between third ventricle diameter size and vitamin D level. Physiol Int. 2021;2021:00179. https://doi.org/10.1556/2060.2021.00179.

    Article  CAS  Google Scholar 

  135. Luedde M, Spehlmann ME, Hippe H, Loosen SH, Roy S, Vargas Cardenas D, Vucur M, Frey N, Koch A, Luedde T, Trautwein C, Tacke F, Roderburg C. Serum levels of kisspeptin are elevated in critically ill patients. PLoS ONE. 2018;13(10):e0206064. https://doi.org/10.1371/journal.pone.0206064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Aczél T, Kun J, Szőke É, Rauch T, Junttila S, Gyenesei A, Bölcskei K, Helyes Z. Transcriptional alterations in the trigeminal ganglia, nucleus and peripheral blood mononuclear cells in a rat orofacial pain model. Front Mol Neurosci. 2018;11:219. https://doi.org/10.3389/fnmol.2018.00219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Csabafi K, Bagosi Z, Dobó É, Szakács J, Telegdy G, Szabó G. Kisspeptin modulates pain sensitivity of CFLP mice. Peptides. 2018;105:21–7. https://doi.org/10.1016/j.peptides.2018.04.018.

    Article  CAS  PubMed  Google Scholar 

  138. Spampinato S, Trabucco A, Biasiotta A, Biagioni F, Cruccu G, Copani A, Colledge WH, Sortino MA, Nicoletti F, Chiechio S. Hyperalgesic activity of kisspeptin in mice. Mol Pain. 2011;7:90. https://doi.org/10.1186/1744-8069-7-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Elhabazi K, Humbert J, Bertin I, Schmitt M, Bihel F, Bourguignon J, Bucher B, Becker JAJ, Sorg T, Meziane H, Petit-Demoulière B, Ilien B, Simonin F. Endogenous mammalian RF-amide peptides, including PrRP, kisspeptin and 26RFa, modulate nociception and morphine analgesia via NPFF receptors. Neuropharmacology. 2013;75:164–71. https://doi.org/10.1016/j.neuropharm.2013.07.012.

    Article  CAS  PubMed  Google Scholar 

  140. Lim SS, Davies MJ, Norman RJ, Moran LJ. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum Reprod Update. 2012;18(6):618–37. https://doi.org/10.1093/humupd/dms030.

    Article  CAS  PubMed  Google Scholar 

  141. Wang F, Wu Y, Zhu Y, Ding T, Batterham RL, Qu F, Hardiman PJ. Pharmacologic therapy to induce weight loss in women who have obesity/overweight with polycystic ovary syndrome: a systematic review and network meta-analysis. Obes Rev. 2018;19(10):1424–45. https://doi.org/10.1111/obr.12720.

    Article  PubMed  Google Scholar 

  142. Adali E, Yildizhan R, Kurdoglu M, Kolusari A, Edirne T, Sahin HG, Yildizhan B, Kamaci M. The relationship between clinico-biochemical characteristics and psychiatric distress in young women with polycystic ovary syndrome. J Int Med Res. 2008;36(6):1188–96. https://doi.org/10.1177/147323000803600604.

    Article  CAS  PubMed  Google Scholar 

  143. Carmina E, Bucchieri S, Esposito A, Del Puente A, Mansueto P, Orio F, Di Fede G, Rini G. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab. 2007;92(7):2500–5. https://doi.org/10.1210/jc.2006-2725.

    Article  CAS  PubMed  Google Scholar 

  144. Carmina E, Guastella E, Longo RA, Rini GB, Lobo RA. Correlates of increased lean muscle mass in women with polycystic ovary syndrome. Eur J Endocrinol. 2009;161(4):583–9. https://doi.org/10.1530/EJE-09-0398.

    Article  CAS  PubMed  Google Scholar 

  145. Backonja U, Hediger ML, Chen Z, Lauver DR, Sun L, Peterson CM, Buck Louis GM. Beyond body mass index: Using anthropometric measures and body composition indicators to assess odds of an endometriosis diagnosis. J Womens Health (Larchmt). 2017;26(9):941–50. https://doi.org/10.1089/jwh.2016.6128.

    Article  PubMed  Google Scholar 

  146. Liu Y, Zhang W. Association between body mass index and endometriosis risk: A meta-analysis. Oncotarget. 2017;8(29):46928–36. https://doi.org/10.18632/oncotarget.14916.

    Article  PubMed  Google Scholar 

  147. Backonja U, Buck Louis G, Lauver D. Overall adiposity, adipose tissue distribution, and endometriosis: A systematic review. Nurs Res. 2016;65(2):151–66. https://doi.org/10.1097/NNR.0000000000000146.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Byun J, Peterson CM, Backonja U, Taylor RN, Stanford JB, Allen-Brady KL, Smith KR, Louis GMB, Schliep KC. Adiposity and endometriosis severity and typology. J Minim Invasive Gynecol. 2020;27(7):1516–23. https://doi.org/10.1016/j.jmig.2020.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Geronikolou SA, Pavlopoulou A, Cokkinos DV, Bacopoulou F, Chrousos GP. Polycystic οvary syndrome revisited: An interactions network approach. Eur J Clin Invest. 2021;51(9):e13578. https://doi.org/10.1111/eci.13578.

    Article  CAS  PubMed  Google Scholar 

  150. Sarray S, Madan S, Saleh LR, Mahmoud N, Almawi WY. Validity of adiponectin-to-leptin and adiponectin-to-resistin ratios as predictors of polycystic ovary syndrome. Fertil Steril. 2015;104(2):460–6. https://doi.org/10.1016/j.fertnstert.2015.05.007.

    Article  CAS  PubMed  Google Scholar 

  151. de Medeiros SF, Rodgers RJ, Norman RJ. Adipocyte and steroidogenic cell cross-talk in polycystic ovary syndrome. Hum Reprod Update. 2021;27(4):771–96. https://doi.org/10.1093/humupd/dmab004.

    Article  CAS  PubMed  Google Scholar 

  152. Schüler-Toprak S, Ortmann O, Buechler C, Treeck O. The complex roles of adipokines in polycystic ovary syndrome and endometriosis. Biomedicines. 2022;10(10):2503. https://doi.org/10.3390/biomedicines10102503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Kalaitzopoulos DR, Lempesis IG, Samartzis N, Kolovos G, Dedes I, Daniilidis A, Nirgianakis K, Leeners B, Goulis DG, Samartzis EP. Leptin concentrations in endometriosis: A systematic review and meta-analysis. J Reprod Immunol. 2021;146:103338. https://doi.org/10.1016/j.jri.2021.103338.

    Article  CAS  PubMed  Google Scholar 

  154. Choi YS, Oh HK, Choi J. Expression of adiponectin, leptin, and their receptors in ovarian endometrioma. Fertil Steril. 2013;100(1):135,141.e2. https://doi.org/10.1016/j.fertnstert.2013.03.019.

    Article  CAS  Google Scholar 

  155. Kim TH, Bae N, Kim T, Hsu AL, Hunter MI, Shin J, Jeong J. Leptin stimulates endometriosis development in mouse models. Biomedicines. 2022;10(9):2160. https://doi.org/10.3390/biomedicines10092160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Styer AK, Sullivan BT, Puder M, Arsenault D, Petrozza JC, Serikawa T, Chang S, Hasan T, Gonzalez RR, Rueda BR. Ablation of leptin signaling disrupts the establishment, development, and maintenance of endometriosis-like lesions in a murine model. Endocrinology. 2008;149(2):506–14. https://doi.org/10.1210/en.2007-1225.

    Article  CAS  PubMed  Google Scholar 

  157. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763–70. https://doi.org/10.1038/27376.

    Article  CAS  PubMed  ADS  Google Scholar 

  158. Ferrero S, Anserini P, Remorgida V, Ragni N. Body mass index in endometriosis. Eur J Obstet Gynecol Reprod Biol. 2005;121(1):94–8. https://doi.org/10.1016/j.ejogrb.2004.11.019.

    Article  PubMed  Google Scholar 

  159. Lafay Pillet M, Schneider A, Borghese B, Santulli P, Souza C, Streuli I, de Ziegler D, Chapron C. Deep infiltrating endometriosis is associated with markedly lower body mass index: A 476 case–control study. Hum Reprod. 2012;27(1):265–72. https://doi.org/10.1093/humrep/der346.

    Article  PubMed  Google Scholar 

  160. Bedaiwy MA, Falcone T, Goldberg JM, Sharma RK, Nelson DR, Agarwal A. Peritoneal fluid leptin is associated with chronic pelvic pain but not infertility in endometriosis patients. Hum Reprod. 2006;21(3):788–91. https://doi.org/10.1093/humrep/dei376.

    Article  CAS  PubMed  Google Scholar 

  161. Pantelis A, Machairiotis N, Lapatsanis DP. The formidable yet unresolved interplay between endometriosis and obesity. Sci World J. 2021;2021:6653677. https://doi.org/10.1155/2021/6653677.

    Article  CAS  Google Scholar 

  162. Gruber TM, Mechsner S. Pathogenesis of Endometriosis: The origin of Pain and Subfertility. Cells. 2021;10(6):1381. https://doi.org/10.3390/cells10061381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Li XF, Kinsey-Jones JS, Cheng Y, Knox AM, Lin Y, Petrou NA, Roseweir A, Lightman SL, Milligan SR, Millar RP, O’Byrne KT. Kisspeptin signalling in the hypothalamic arcuate nucleus regulates GnRH pulse generator frequency in the rat. PLoS ONE. 2009;4(12):e8334. https://doi.org/10.1371/journal.pone.0008334.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  164. Young J, George JT, Tello JA, Francou B, Bouligand J, Guiochon-Mantel A, Brailly-Tabard S, Anderson RA, Millar RP. Kisspeptin restores pulsatile LH secretion in patients with neurokinin B signaling deficiencies: Physiological, pathophysiological and therapeutic implications. Neuroendocrinology. 2013;97(2):193–202. https://doi.org/10.1159/000336376.

    Article  CAS  PubMed  Google Scholar 

  165. Garg A, Patel B, Abbara AA, Dhillo WS. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf). 2022;97(2):156–64. https://doi.org/10.1111/cen.14704.

    Article  CAS  PubMed  Google Scholar 

  166. Romero-Ruiz A, Skorupskaite K, Gaytan F, Torres E, Perdices-Lopez C, Mannaerts BM, Qi S, Leon S, Manfredi-Lozano M, Lopez-Rodriguez C, Avendaño MS, Sanchez-Garrido MA, Vazquez MJ, Pinilla L, van Duin M, Kohout TA, Anderson RA, Tena-Sempere M. Kisspeptin treatment induces gonadotropic responses and rescues ovulation in a subset of preclinical models and women with polycystic ovary syndrome. Hum Reprod. 2019;34(12):2495–512. https://doi.org/10.1093/humrep/dez205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Fraser GL, Obermayer-Pietsch B, Laven J, Griesinger G, Pintiaux A, Timmerman D, Fauser BCJM, Lademacher C, Combalbert J, Hoveyda HR, Ramael S. Randomized controlled trial of neurokinin 3 receptor antagonist fezolinetant for treatment of polycystic ovary syndrome. J Clin Endocrinol Metab. 2021;106(9):E3519–32. https://doi.org/10.1210/clinem/dgab320.

    Article  PubMed  PubMed Central  Google Scholar 

  168. George JT, Kakkar R, Marshall J, Scott ML, Finkelman RD, Ho TW, Veldhuis J, Skorupskaite K, Anderson RA, McIntosh S, Webber L. Neurokinin B receptor antagonism in women with polycystic ovary syndrome: A randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2016;101(11):4313–21. https://doi.org/10.1210/jc.2016-1202.

    Article  CAS  PubMed  Google Scholar 

  169. Skorupskaite K, George JT, Veldhuis JD, Millar RP, Anderson RA. Kisspeptin and neurokinin B interactions in modulating gonadotropin secretion in women with polycystic ovary syndrome. Hum Reprod. 2020;35(6):1421–31. https://doi.org/10.1093/humrep/deaa104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chabbert-Buffet N, Meduri G, Bouchard P, Spitz IM. Selective progesterone receptor modulators and progesterone antagonists: Mechanisms of action and clinical applications. Hum Reprod Update. 2005;11(3):293–307. https://doi.org/10.1093/humupd/dmi002.

    Article  CAS  PubMed  Google Scholar 

  171. Pawsey S, Mills EG, Ballantyne E, Donaldson K, Kerr M, Trower M, Dhillo WS. Elinzanetant (NT-814), a neurokinin 1,3 receptor antagonist, reduces estradiol and progesterone in healthy women. J Clin Endocrinol Metab. 2021;106(8):e3221–34. https://doi.org/10.1210/clinem/dgab108.

    Article  PubMed  PubMed Central  Google Scholar 

  172. d’Anglemont de Tassigny X, Jayasena CN, Murphy KG, Dhillo WS, Colledge WH. Mechanistic insights into the more potent effect of KP-54 compared to KP-10 in vivo. PLoS One. 2017;12(5):e0176821. https://doi.org/10.1371/journal.pone.0176821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Matsui H, Asami T. Effects and therapeutic potentials of kisspeptin analogs: Regulation of the hypothalamic-pituitary-gonadal axis. Neuroendocrinology. 2014;99(1):49–60. https://doi.org/10.1159/000357809.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was (partially) funded by Italian Ministry of Health- Current research IRCCS.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, N.S. and P.V.; methodology, N.S.; software, N.S.; validation, N.S., P.V., P.C., R.M., M.C; investigation, N.S.; resources, N.S.; data curation, N.S.; writing—original draft preparation, N.S.; writing—review and editing, P.V, P.C.; visualization, N.S., P.V., P.C., R.M., M.C; supervision, P.V.; project administration, N.S. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Paola Viganò.

Ethics declarations

Conflict of interest

The authors declare no commercial or financial ties that could be seen as a conflict of interest in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmeri, N., Viganò, P., Cavoretto, P. et al. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome. Rev Endocr Metab Disord 25, 239–257 (2024). https://doi.org/10.1007/s11154-023-09826-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09826-0

Keywords

Navigation