Skip to main content

Advertisement

Log in

Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Obesity is a global public health problem that results in chronic pathologies such as diabetes, cardiovascular diseases, and cancer. The treatment approach based on energy restriction and promotion of physical activity is ineffective in the long term. Due to the high prevalence of this pathology, complementary treatments such as brown adipose tissue activation (BAT) and white adipose tissue browning (WAT) have been proposed. Dietary polyphenols are plant secondary metabolites that can stimulate browning and thermogenesis of adipose tissue. They have also been shown to prevent body weight gain, and decrease systemic inflammation produced by high-fat diets. Ingested dietary polyphenols that reach the colon are metabolized by the gut microbiota (GM), regulating its composition and generating a great array of metabolites. GM is involved in the production of short chain fatty acids and secondary bile salts that regulate energetic metabolism. The alteration in the composition of GM observed in metabolic diseases such as obesity and type 2 diabetes can be attenuated by polyphenols. Recent studies support the hypothesis that GM would mediate WAT browning and BAT thermogenesis activation induced by polyphenol administration. Together, these results indicate that GM in the presence of polyphenols plays a fundamental role in the control of obesity possible through BAT activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Abbreviations

AT:

adipose tissue

AMPK:

adenosine monophosphate-activated protein kinase

BAT:

brown adipose tissue activation

CC:

Camu-Camu

cAMP:

cyclic adenosine monophosphate

C/EBPα:

CCAAT/enhancer-binding protein α

CPT1α:

carnitine palmitoyltransferase Iα.

CREB:

co-activator cAMP response element-binding protein

COX2:

cyclooxygenase 2

DIO2:

deiodinase 2

EE:

energy expenditure

FIAF:

fasting-induced adipocyte factor

FXR:

farnesoid X receptor

GE:

grape extract

GSP:

Guarana seed powder

GM:

gut microbiota

HFD:

high-fat diets

iWAT:

inguinal WAT

LDL:

low density lipoprotein

LPL:

lipoprotein lipase

LPS:

lipopolysaccharide

MAPKs:

mitogen activated protein kinases

NLE:

Nitzschia laevis extract

BE:

polyphenol-rich blueberry extract

PKA:

protein kinase A

PE:

Pu-erh tea after its fermentation

PEBC:

Pu-erh tea bioactive compounds

PGC1-α:

peroxisome proliferator-activated receptor gamma coactivator 1-α

PPARα/β /γ:

peroxisome proliferator-activated receptor α/β /γ

PRDM16:

PR domain zinc finger protein 16

SCFAs:

short-chain volatile fatty acids

SIRT1:

sirtuin 1

SREBP1c:

sterol regulatory element-binding protein-1c

TFAM:

mitochondrial transcription factor A

TGR5:

membrane-type receptor for bile acids

TLR4:

toll-like receptor 4

UCP-1:

uncoupling protein 1

VA:

vanillic acid

WAT:

white adipose tissue browning.

References

  1. Zukiewicz-Sobczak W, Wroblewska P, Zwolinski J, Chmielewska-Badora J, Adamczuk P, Krasowska E, et al. Obesity and poverty paradox in developed countries. Ann Agric Environ Med. 2014;21(3):590–4. https://doi.org/10.5604/12321966.1120608.

    Article  PubMed  Google Scholar 

  2. Yudkin JS. Inflammation, obesity, and the metabolic syndrome. Horm Metab Res. 2007;39(10):707–9. https://doi.org/10.1055/s-2007-985898.

    Article  CAS  PubMed  Google Scholar 

  3. Concha F, Prado G, Quezada J, Ramirez A, Bravo N, Flores C, et al. Nutritional and non-nutritional agents that stimulate white adipose tissue browning. Rev Endocr Metab Disord. 2019;20(2):161–71. https://doi.org/10.1007/s11154-019-09495-y.

    Article  CAS  PubMed  Google Scholar 

  4. Bohn T. Dietary factors affecting polyphenol bioavailability. Nutr Rev. 2014;72(7):429–52. https://doi.org/10.1111/nure.12114.

    Article  PubMed  Google Scholar 

  5. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. https://doi.org/10.1007/s00394-017-1445-8.

    Article  CAS  PubMed  Google Scholar 

  6. Harakeh SM, Khan I, Kumosani T, Barbour E, Almasaudi SB, Bahijri SM, et al. Gut microbiota: a contributing factor to obesity. Front Cell Infect Microbiol. 2016;6:95. https://doi.org/10.3389/fcimb.2016.00095.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Magne F, Gotteland M, Gauthier L, Zazueta A, Pesoa S, Navarrete P, et al. The Firmicutes/Bacteroidetes ratio: a relevant marker of gut Dysbiosis in obese patients? Nutrients. 2020;12(5). https://doi.org/10.3390/nu12051474.

  8. Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57(6):1470–81. https://doi.org/10.2337/db07-1403.

    Article  CAS  PubMed  Google Scholar 

  9. Gasaly NRK, Gotteland M. Phytochemicals: a new class of prebiotics. Rev Chil Nutr. 2020;47(2).

  10. Pan P, Lam V, Salzman N, Huang YW, Yu J, Zhang J, et al. Black raspberries and their anthocyanin and Fiber fractions Alter the composition and diversity of gut microbiota in F-344 rats. Nutr Cancer. 2017;69(6):943–51. https://doi.org/10.1080/01635581.2017.1340491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Etxeberria U, Arias N, Boque N, Macarulla MT, Portillo MP, Martinez JA, et al. Reshaping faecal gut microbiota composition by the intake of trans-resveratrol and quercetin in high-fat sucrose diet-fed rats. J Nutr Biochem. 2015;26(6):651–60. https://doi.org/10.1016/j.jnutbio.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  12. Cani PD, Van Hul M, Lefort C, Depommier C, Rastelli M, Everard A. Microbial regulation of organismal energy homeostasis. Nat Metab. 2019;1(1):34–46. https://doi.org/10.1038/s42255-018-0017-4.

    Article  CAS  PubMed  Google Scholar 

  13. Hartroft WS. The pathology of obesity. Bull N Y Acad Med. 1960;36:313–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114(12):1752–61. https://doi.org/10.1172/JCI21625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Guh DP, Zhang W, Bansback N, Amarsi Z, Birmingham CL, Anis AH. The incidence of co-morbidities related to obesity and overweight: a systematic review and meta-analysis. BMC Public Health. 2009;9:88. https://doi.org/10.1186/1471-2458-9-88.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gonzalez-Barroso MDM, Ricquier D, Cassard-Doulcier AM. The human uncoupling protein-1 gene (UCP1): present status and perspectives in obesity research. Obesity reviews. 2000;1(2):61–72.

    Article  Google Scholar 

  17. Vázquez-Vela MEF, Torres N, Tovar AR. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res. 2008;39(8):715–28.

    Article  PubMed  Google Scholar 

  18. Fenzl A, Kiefer FW. Brown adipose tissue and thermogenesis. Horm Mol Biol Clin Invest. 2014;19(1):25–37.

    CAS  Google Scholar 

  19. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. https://doi.org/10.1152/physrev.00015.2003.

    Article  CAS  PubMed  Google Scholar 

  20. Green AL, Bagci U, Hussein S, Kelly PV, Muzaffar R, Neuschwander-Tetri BA, et al. Brown adipose tissue detected by PET/CT imaging is associated with less central obesity. Nucl Med Commun. 2017;38(7):629–35.

    Article  PubMed  Google Scholar 

  21. Morton GJ, Muta K, Kaiyala KJ, Rojas JM, Scarlett JM, Matsen ME, et al. Evidence that the sympathetic nervous system elicits rapid, coordinated, and reciprocal adjustments of insulin secretion and insulin sensitivity during cold exposure. Diabetes. 2017;66(4):823–34. https://doi.org/10.2337/db16-1351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Blondin DP, Tingelstad HC, Noll C, Frisch F, Phoenix S, Guérin B, et al. Dietary fatty acid metabolism of brown adipose tissue in cold-acclimated men. Nat Commun. 2017;8(1):1–9.

    Article  Google Scholar 

  23. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. https://doi.org/10.1038/nm.3361.

    Article  CAS  PubMed  Google Scholar 

  24. Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, et al. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol. 2004;24(7):3057–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92(6):829–39.

    Article  CAS  PubMed  Google Scholar 

  26. Bartelt A, Heeren J. Adipose tissue browning and metabolic health. Nat Rev Endocrinol. 2014;10(1):24–36. https://doi.org/10.1038/nrendo.2013.204.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang X, Zhang QX, Wang X, Zhang L, Qu W, Bao B, et al. Dietary luteolin activates browning and thermogenesis in mice through an AMPK/PGC1alpha pathway-mediated mechanism. Int J Obes. 2016;40(12):1841–9. https://doi.org/10.1038/ijo.2016.108.

    Article  CAS  Google Scholar 

  28. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Ppargamma. Cell. 2012;150(3):620–32. https://doi.org/10.1016/j.cell.2012.06.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Silvester AJ, Aseer KR, Yun JW. Dietary polyphenols and their roles in fat browning. J Nutr Biochem. 2019;64:1–12. https://doi.org/10.1016/j.jnutbio.2018.09.028.

    Article  CAS  PubMed  Google Scholar 

  30. Li AN, Li S, Zhang YJ, Xu XR, Chen YM, Li HB. Resources and biological activities of natural polyphenols. Nutrients. 2014;6(12):6020–47. https://doi.org/10.3390/nu6126020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Manach C, Scalbert A, Morand C, Remesy C, Jimenez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79(5):727–47. https://doi.org/10.1093/ajcn/79.5.727.

    Article  CAS  PubMed  Google Scholar 

  32. Marin L, Miguelez EM, Villar CJ, Lombo F. Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int. 2015;2015:905215–8. https://doi.org/10.1155/2015/905215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem. 2002;13(10):572–84.

    Article  CAS  PubMed  Google Scholar 

  34. Deby-Dupont G, Mouithys-Mickalad A, Serteyn D, Lamy M, Deby C. Resveratrol and curcumin reduce the respiratory burst of chlamydia-primed THP-1 cells. Biochem Biophys Res Commun. 2005;333(1):21–7. https://doi.org/10.1016/j.bbrc.2005.05.073.

    Article  CAS  PubMed  Google Scholar 

  35. Braunlich M, Slimestad R, Wangensteen H, Brede C, Malterud KE, Barsett H. Extracts, anthocyanins and procyanidins from Aronia melanocarpa as radical scavengers and enzyme inhibitors. Nutrients. 2013;5(3):663–78. https://doi.org/10.3390/nu5030663.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chu AJ. Antagonism by bioactive polyphenols against inflammation: a systematic view. Inflamm Allergy Drug Targets. 2014;13(1):34–64.

    Article  CAS  PubMed  Google Scholar 

  37. Dulloo AG, Duret C, Rohrer D, Girardier L, Mensi N, Fathi M, et al. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 1999;70(6):1040–5. https://doi.org/10.1093/ajcn/70.6.1040.

    Article  CAS  PubMed  Google Scholar 

  38. Decorde K, Teissedre PL, Sutra T, Ventura E, Cristol JP, Rouanet JM. Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res. 2009;53(5):659–66. https://doi.org/10.1002/mnfr.200800165.

    Article  CAS  PubMed  Google Scholar 

  39. Arias N, Macarulla MT, Aguirre L, Milton I, Portillo MP. The combination of resveratrol and quercetin enhances the individual effects of these molecules on triacylglycerol metabolism in white adipose tissue. Eur J Nutr. 2016;55(1):341–8. https://doi.org/10.1007/s00394-015-0854-9.

    Article  CAS  PubMed  Google Scholar 

  40. Boque N, Campion J, de la Iglesia R, de la Garza AL, Milagro FI, San Roman B, et al. Screening of polyphenolic plant extracts for anti-obesity properties in Wistar rats. J Sci Food Agric. 2013;93(5):1226–32. https://doi.org/10.1002/jsfa.5884.

    Article  CAS  PubMed  Google Scholar 

  41. Kim NH, Jegal J, Kim YN, Heo JD, Rho JR, Yang MH, et al. Chokeberry extract and its active polyphenols suppress Adipogenesis in 3T3-L1 adipocytes and modulates fat accumulation and insulin resistance in diet-induced obese mice. Nutrients. 2018;10(11). https://doi.org/10.3390/nu10111734.

  42. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 2013;141(2):1530–5. https://doi.org/10.1016/j.foodchem.2013.03.085.

    Article  CAS  PubMed  Google Scholar 

  43. Andrade JM, Frade AC, Guimaraes JB, Freitas KM, Lopes MT, Guimaraes AL, et al. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr. 2014;53(7):1503–10. https://doi.org/10.1007/s00394-014-0655-6.

    Article  CAS  PubMed  Google Scholar 

  44. Wang S, Liang X, Yang Q, Fu X, Zhu M, Rodgers BD, et al. Resveratrol enhances brown adipocyte formation and function by activating AMP-activated protein kinase (AMPK) alpha1 in mice fed high-fat diet. Mol Nutr Food Res. 2017;61(4). https://doi.org/10.1002/mnfr.201600746.

  45. Carrasco-Pozo C, Cires MJ, Gotteland M. Quercetin and Epigallocatechin Gallate in the prevention and treatment of obesity: from molecular to clinical studies. J Med Food. 2019;22(8):753–70. https://doi.org/10.1089/jmf.2018.0193.

    Article  CAS  PubMed  Google Scholar 

  46. Forbes-Hernandez TY, Giampieri F, Gasparrini M, Afrin S, Mazzoni L, Cordero MD, et al. Lipid accumulation in HepG2 cells is attenuated by strawberry extract through AMPK activation. Nutrients. 2017;9(6). https://doi.org/10.3390/nu9060621.

  47. Giampieri F, Alvarez-Suarez JM, Cordero MD, Gasparrini M, Forbes-Hernandez TY, Afrin S, et al. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade. Food Chem. 2017;234:464–71. https://doi.org/10.1016/j.foodchem.2017.05.017.

    Article  CAS  PubMed  Google Scholar 

  48. Mosqueda-Solis A, Sanchez J, Portillo MP, Palou A, Pico C. Combination of capsaicin and hesperidin reduces the effectiveness of each compound to decrease the adipocyte size and to induce Browning features in adipose tissue of Western diet fed rats. J Agric Food Chem. 2018;66(37):9679–89. https://doi.org/10.1021/acs.jafc.8b02611.

    Article  CAS  PubMed  Google Scholar 

  49. Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem. 2017;49:15–21. https://doi.org/10.1016/j.jnutbio.2017.07.008.

    Article  CAS  PubMed  Google Scholar 

  50. Peng CH, Liu LK, Chuang CM, Chyau CC, Huang CN, Wang CJ. Mulberry water extracts possess an anti-obesity effect and ability to inhibit hepatic lipogenesis and promote lipolysis. J Agric Food Chem. 2011;59(6):2663–71. https://doi.org/10.1021/jf1043508.

    Article  CAS  PubMed  Google Scholar 

  51. Prior RL, Wu X, Gu L, Hager TJ, Hager A, Howard LR. Whole berries versus berry anthocyanins: interactions with dietary fat levels in the C57BL/6J mouse model of obesity. J Agric Food Chem. 2008;56(3):647–53. https://doi.org/10.1021/jf071993o.

    Article  CAS  PubMed  Google Scholar 

  52. Han X, Guo J, You Y, Yin M, Liang J, Ren C, et al. Vanillic acid activates thermogenesis in brown and white adipose tissue. Food Funct. 2018;9(8):4366–75. https://doi.org/10.1039/c8fo00978c.

    Article  CAS  PubMed  Google Scholar 

  53. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–70. https://doi.org/10.1016/j.cell.2012.01.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dinan TG, Cryan JF. Microbes, immunity, and behavior: psychoneuroimmunology meets the microbiome. Neuropsychopharmacology. 2017;42(1):178–92. https://doi.org/10.1038/npp.2016.103.

    Article  CAS  PubMed  Google Scholar 

  55. Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 2010;28:623–67. https://doi.org/10.1146/annurev-immunol-030409-101330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ringel-Kulka T, Cheng J, Ringel Y, Salojarvi J, Carroll I, Palva A, et al. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis. PLoS One. 2013;8(5):e64315. https://doi.org/10.1371/journal.pone.0064315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8. https://doi.org/10.1126/science.1110591.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gibson GR, Roberfroid MB. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr. 1995;125(6):1401–12. https://doi.org/10.1093/jn/125.6.1401.

    Article  CAS  PubMed  Google Scholar 

  59. Kim E, Coelho D, Blachier F. Review of the association between meat consumption and risk of colorectal cancer. Nutr Res. 2013;33(12):983–94. https://doi.org/10.1016/j.nutres.2013.07.018.

    Article  CAS  PubMed  Google Scholar 

  60. Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA, et al. The gut microbiota of healthy Chilean subjects reveals a high abundance of the phylum Verrucomicrobia. Front Microbiol. 2017;8:1221. https://doi.org/10.3389/fmicb.2017.01221.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–5. https://doi.org/10.1073/pnas.0504978102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ. Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol. 2006;40(3):235–43.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenbaum M, Knight R, Leibel RL. The gut microbiota in human energy homeostasis and obesity. Trends Endocrinol Metab. 2015;26(9):493–501. https://doi.org/10.1016/j.tem.2015.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cummings JH, Macfarlane GT. Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr. 1997;21(6):357–65. https://doi.org/10.1177/0148607197021006357.

    Article  CAS  PubMed  Google Scholar 

  65. Vinolo MA, Rodrigues HG, Nachbar RT, Curi R. Regulation of inflammation by short chain fatty acids. Nutrients. 2011;3(10):858–76. https://doi.org/10.3390/nu3100858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027–31. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  67. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A. 2004;101(44):15718–23. https://doi.org/10.1073/pnas.0407076101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, et al. The gut microbiota modulates host energy and lipid metabolism in mice. J Lipid Res. 2010;51(5):1101–12. https://doi.org/10.1194/jlr.M002774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mandard S, Zandbergen F, van Straten E, Wahli W, Kuipers F, Muller M, et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J Biol Chem. 2006;281(2):934–44. https://doi.org/10.1074/jbc.M506519200.

    Article  CAS  PubMed  Google Scholar 

  70. Backhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci U S A. 2007;104(3):979–84. https://doi.org/10.1073/pnas.0605374104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jenner AM, Rafter J, Halliwell B. Human fecal water content of phenolics: the extent of colonic exposure to aromatic compounds. Free Radic Biol Med. 2005;38(6):763–72. https://doi.org/10.1016/j.freeradbiomed.2004.11.020.

    Article  CAS  PubMed  Google Scholar 

  72. Braune A, Engst W, Blaut M. Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ Microbiol. 2016;18(7):2117–29. https://doi.org/10.1111/1462-2920.12864.

    Article  CAS  PubMed  Google Scholar 

  73. Rechner AR, Smith MA, Kuhnle G, Gibson GR, Debnam ES, Srai SK, et al. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 2004;36(2):212–25.

    Article  CAS  PubMed  Google Scholar 

  74. Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes. 2016;7(3):216–34. https://doi.org/10.1080/19490976.2016.1158395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Monagas M, Urpi-Sarda M, Sanchez-Patan F, Llorach R, Garrido I, Gomez-Cordoves C, et al. Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct. 2010;1(3):233–53. https://doi.org/10.1039/c0fo00132e.

    Article  CAS  PubMed  Google Scholar 

  76. Kawai Y, Nishikawa T, Shiba Y, Saito S, Murota K, Shibata N, et al. Macrophage as a target of quercetin glucuronides in human atherosclerotic arteries: implication in the anti-atherosclerotic mechanism of dietary flavonoids. J Biol Chem. 2008;283(14):9424–34. https://doi.org/10.1074/jbc.M706571200.

    Article  CAS  PubMed  Google Scholar 

  77. Bolca S, Van de Wiele T, Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Curr Opin Biotechnol. 2013;24(2):220–5. https://doi.org/10.1016/j.copbio.2012.09.009.

    Article  CAS  PubMed  Google Scholar 

  78. van Duynhoven J, Vaughan EE, Jacobs DM, Kemperman RA, van Velzen EJ, Gross G, et al. Metabolic fate of polyphenols in the human superorganism. Proc Natl Acad Sci U S A. 2011;108(Suppl 1):4531–8. https://doi.org/10.1073/pnas.1000098107.

    Article  PubMed  Google Scholar 

  79. Garcia-Villalba R, Vissenaekens H, Pitart J, Romo-Vaquero M, Espin JC, Grootaert C, et al. Gastrointestinal simulation model TWIN-SHIME shows differences between human Urolithin-Metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. J Agric Food Chem. 2017;65(27):5480–93. https://doi.org/10.1021/acs.jafc.7b02049.

    Article  CAS  PubMed  Google Scholar 

  80. Tomas-Barberan FA, Selma MV, Espin JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care. 2016;19(6):471–6. https://doi.org/10.1097/MCO.0000000000000314.

    Article  CAS  PubMed  Google Scholar 

  81. Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–74. https://doi.org/10.1016/j.cell.2015.11.004.

    Article  CAS  PubMed  Google Scholar 

  82. Bortolin RC, Vargas AR, de Miranda RV, Gasparotto J, Chaves PR, Schnorr CE, et al. Guarana supplementation attenuated obesity, insulin resistance, and adipokines dysregulation induced by a standardized human Western diet via brown adipose tissue activation. Phytother Res. 2019;33(5):1394–403. https://doi.org/10.1002/ptr.6330.

    Article  CAS  PubMed  Google Scholar 

  83. Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509–17. https://doi.org/10.2337/db08-1637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Li Z, Yi CX, Katiraei S, Kooijman S, Zhou E, Chung CK, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit. Gut. 2018;67(7):1269–79. https://doi.org/10.1136/gutjnl-2017-314050.

    Article  CAS  PubMed  Google Scholar 

  85. Prasain JKG, C.; Barnes, S. Cranberry anti-cancer compounds and their uptake and metabolism: an updated review. Journal of Berry Research. 2020;10:1–10. https://doi.org/10.3233/JBR-180370.

    Article  Google Scholar 

  86. May SM, G.; Marchesi, J.; Parry, L. Impact of black raspberries on the normal and malignant Apc deficient murine gut microbiome. Journal of Berry Research. 2018;10:61–76. https://doi.org/10.3233/JBR-180372.

    Article  CAS  Google Scholar 

  87. Pan P, Oshima K, Huang YW, Yearsley M, Zhang J, Arnold M, et al. Gut bacteria are required for the benefits of black raspberries in Apc (min/+) mice. J Berry Res. 2018;8(4):239–49. https://doi.org/10.3233/JBR-180337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pierre JF, Martinez KB, Ye H, Nadimpalli A, Morton TC, Yang J, et al. Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. Am J Physiol Gastrointest Liver Physiol. 2016;311(2):G286–304. https://doi.org/10.1152/ajpgi.00202.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Brandl K, Kumar V, Eckmann L. Gut-liver axis at the frontier of host-microbial interactions. Am J Physiol Gastrointest Liver Physiol. 2017;312(5):G413–9. https://doi.org/10.1152/ajpgi.00361.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Fiorucci S, Mencarelli A, Palladino G, Cipriani S. Bile-acid-activated receptors: targeting TGR5 and farnesoid-X-receptor in lipid and glucose disorders. Trends Pharmacol Sci. 2009;30(11):570–80. https://doi.org/10.1016/j.tips.2009.08.001.

    Article  CAS  PubMed  Google Scholar 

  91. Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68(4):1574–88. https://doi.org/10.1002/hep.29857.

    Article  CAS  PubMed  Google Scholar 

  92. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. https://doi.org/10.1038/nature04330.

    Article  CAS  PubMed  Google Scholar 

  93. Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10(3):167–77. https://doi.org/10.1016/j.cmet.2009.08.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hui S, Liu Y, Huang L, Zheng L, Zhou M, Lang H, et al. Resveratrol enhances brown adipose tissue activity and white adipose tissue browning in part by regulating bile acid metabolism via gut microbiota remodeling. Int J Obes. 2020;44:1678–90. https://doi.org/10.1038/s41366-020-0566-y.

    Article  CAS  Google Scholar 

  95. Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat diet-fed mice. Int J Obes. 2020;44(1):213–25. https://doi.org/10.1038/s41366-019-0332-1.

    Article  CAS  Google Scholar 

  96. Liao W, Yin X, Li Q, Zhang H, Liu Z, Zheng X, et al. Resveratrol-induced white adipose tissue Browning in obese mice by remodeling fecal microbiota. Molecules. 2018;23(12). https://doi.org/10.3390/molecules23123356.

  97. Anhe FF, Nachbar RT, Varin TV, Trottier J, Dudonne S, Le Barz M, et al. Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. 2018;68:453–64. https://doi.org/10.1136/gutjnl-2017-315565.

    Article  CAS  PubMed  Google Scholar 

  98. Guo B, Liu B, Wei H, Cheng KW, Chen F. Extract of the microalga Nitzschia laevis prevents high-fat-diet-induced obesity in mice by modulating the composition of gut microbiota. Mol Nutr Food Res. 2019;63(3):e1800808. https://doi.org/10.1002/mnfr.201800808.

    Article  CAS  PubMed  Google Scholar 

  99. Han X, Guo J, Yin M, Liu Y, You Y, Zhan J, et al. Grape extract activates Brown adipose tissue through pathway involving the regulation of gut microbiota and bile acid. Mol Nutr Food Res. 2020;64(10):e2000149. https://doi.org/10.1002/mnfr.202000149.

    Article  CAS  PubMed  Google Scholar 

  100. Sheng Y, Liu J, Zheng S, Liang F, Luo Y, Huang K, et al. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food Funct. 2019;10(8):4771–81. https://doi.org/10.1039/c9fo00883g.

    Article  CAS  PubMed  Google Scholar 

  101. Gao X, Xie Q, Kong P, Liu L, Sun S, Xiong B, et al. Polyphenol- and caffeine-rich Postfermented Pu-erh tea improves diet-induced metabolic syndrome by remodeling intestinal homeostasis in mice. Infect Immun. 2018;86(1). https://doi.org/10.1128/IAI.00601-17.

  102. Guo J, Han X, Tan H, Huang W, You Y, Zhan J. Blueberry extract improves obesity through regulation of the gut microbiota and bile acids via pathways involving FXR and TGR5. iScience. 2019;19:676–90. https://doi.org/10.1016/j.isci.2019.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The National Commission for Scientific and Technological Research (ANID, Chile) funded this work (grants FONDECYT #1171550 to D.F.G-D.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego F Garcia-Diaz.

Ethics declarations

Conflict of interest

Authors have nothing to declare.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duarte, L., Gasaly, N., Poblete-Aro, C. et al. Polyphenols and their anti-obesity role mediated by the gut microbiota: a comprehensive review. Rev Endocr Metab Disord 22, 367–388 (2021). https://doi.org/10.1007/s11154-020-09622-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-020-09622-0

Keywords

Navigation