Skip to main content

Plant Polyphenols and Gut Bacteria: Role in Obesity-Induced Metabolic Endotoxaemia and Inflammation

  • Chapter
  • First Online:
Advances in Agri-Food Biotechnology

Abstract

Plant polyphenols (PPs) play an important role in human nutrition due to their antioxidant capacity and the ability to reduce reactive oxygen species (ROS). PPs have been shown to alleviate diseases like type-2 diabetes, obesity, and cardiovascular diseases. Obesity is a disorder that arises due to a sedentary lifestyle besides genetic factors. Its prevalence is rapidly increasing over the past three decades all over the world, including India. Many preclinical studies suggested that plant phenolics could alleviate diet-induced obesity. The usage of PPs is gaining importance, and it is the subject of intensive research due to the ability of gut microbes in metabolizing these compounds. Among PPs, phenolic acids account for one-third of the total intake and flavonoids for the remaining two-thirds of the total intake. In this chapter, the impact of plant-derived PPs is emphasized based on its role in the prevention of obesity and associated low-grade inflammation through their gut modulatory microbial effects is highlighted.

Graphical Abstract

The putative role of millet polyphenol-rich extract against high-fat diet-induced obesity and its related metabolic complication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, Ishtiaq A, Hussain S, Suleria HAR (2016) Natural polyphenols: An overview. Int J Food Prop 20(8):1689–1699

    Google Scholar 

  • Ahirwar R, Mondal PR (2019) Prevalence of obesity in India: A systematic review. Diabetes Metab Syndr Clin Res Rev 13(1):318–321. https://doi.org/10.1016/J.DSX.2018.08.032

    Article  Google Scholar 

  • Alara OR, Abdurahman NH, Olalere OA (2017) Journal of King Saud University – Science Ethanolic extraction of flavonoids, phenolics and antioxidants from Vernonia amygdalina leaf using two-level factorial design. J King Saud Univ Sci:1–10. https://doi.org/10.1016/j.jksus.2017.08.001

  • Alissa EM, Ferns GA (2012) Functional foods and nutraceuticals in the primary prevention of cardiovascular diseases. J Nutr Metab 2012:569486

    PubMed  PubMed Central  Google Scholar 

  • Anhê FF, Roy D, Pilon G, Dudonné S, Matamoros S, Varin TV, Garofalo C, Moine Q, Desjardins Y, Levy E, Marette A (2015) A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut 64(6):872–883

    PubMed  Google Scholar 

  • Ashley D, Marasini D, Brownmiller C, Lee JA, Carbonero F, Lee SO (2019) Impact of grain sorghum polyphenols on microbiota of normal weight and overweight/obese subjects during in vitro fecal fermentation. Nutrients 11(2):217

    CAS  PubMed Central  Google Scholar 

  • Awika JM et al (2018) Complementary effects of cereal and pulse polyphenols and dietary fiber on chronic inflammation and gut health. Food Funct 9(3):1389–1409

    CAS  PubMed  Google Scholar 

  • Bladé C, Baselga-Escudero L, Salvadó MJ, Arola-Arnal A (2013) miRNAs, polyphenols, and chronic disease. Mol Nut Food Res 57(1):58–70. https://doi.org/10.1002/mnfr.201200454

    Article  CAS  Google Scholar 

  • Brglez Mojzer, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., Bren, U. (2016) Polyphenols: Extraction methods, antioxidative action, bioavailability and anticarcinogenic effectsMolecules Basel, Switzerland, 21(7). https://doi.org/10.3390/molecules21070901

    Chapter  Google Scholar 

  • Caesar R, Tremaroli V, Kovatcheva-datchary P, Patrice D (2015) Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Article Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling:658–668. https://doi.org/10.1016/j.cmet.2015.07.026

  • Cardona F, Andrés-lacueva C, Tulipani S, Tinahones FJ, Queipo-ortuño MI (2013) Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem 24(8):1415–1422

    CAS  PubMed  Google Scholar 

  • Caro-Gómez E, Sierra JA, Escobar JS, Álvarez-Quintero R, Naranjo M, Medina S, Ramírez-Pineda JR (2019) Green coffee extract improves cardiometabolic parameters and modulates gut microbiota in high-fat-diet-fed ApoE -/- mice. Nutrients 11(3):497

    PubMed Central  Google Scholar 

  • Chandrasekara A, Shahidi F (2011) Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC-DAD-ESI-MSn. J Funct Foods 3(3):144–158

    CAS  Google Scholar 

  • Chelombitko MA (2018) Role of reactive oxygen species in inflammation: a minireview. Mosc Univ Biol Sci Bull 73(4):199–202

    Google Scholar 

  • Cheynier V (2005) Polyphenols in foods are more complex than often thought. Am J Clin Nutr 81(1):223S–229S

    CAS  PubMed  Google Scholar 

  • Chiva-Blanch G, Badimon L (2017) Effects of polyphenol intake on metabolic syndrome: current evidences from human trials. Oxid Med Cell Longev 2017:5812401

    PubMed  PubMed Central  Google Scholar 

  • Cooper R, Nicola G (2014) Phenolic compounds. Natural products chemistry. Elsevier, Amsterdam

    Google Scholar 

  • Corrêa TA, Rogero MM (2019) Polyphenols regulating microRNAs and inflammation biomarkers in obesity. Nutrition 59:150–157

    PubMed  Google Scholar 

  • Cuevas-Sierra A, Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA (2019) Diet, gut microbiota, and obesity: Links with host genetics and epigenetics and potential applications. Adv Nutr 10(9):S17–S30. https://doi.org/10.1093/advances/nmy078

    Article  PubMed  PubMed Central  Google Scholar 

  • Dostal Z, Modriansky M (2019) The effect of quercetin on microRNA expression: a critical review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 163(2):95–106

    PubMed  Google Scholar 

  • Dueñas M, Muñoz-González I, Cueva C, Jiménez-Girón A, Sánchez-Patán F, Santos-Buelga C, Bartolomé B (2015) A survey of modulation of gut microbiota by dietary polyphenols. Figure 1. BioMed Res Int 2015:850902

    PubMed  PubMed Central  Google Scholar 

  • Fang M, Chen D, Yang CS (2007) Dietary polyphenols may affect DNA methylation. J Nutr 137(1):223S–228S

    CAS  PubMed  Google Scholar 

  • Farhat G, Drummond S, Al-Dujaili EAS (2017) Polyphenols and their role in obesity management: a systematic review of randomized clinical trials. Phytother Res 31(7):1005–1018

    CAS  PubMed  Google Scholar 

  • Faria A, Fernandes I, Norberto S, Mateus N, Calhau C (2014) Interplay between anthocyanins and gut microbiota. J Agric Food Chem 62(29):6898–6902

    CAS  PubMed  Google Scholar 

  • Ferguson LR (2009) Nutrigenomics approaches to functional foods. J Am Diet Assoc 109(3):452–458

    CAS  PubMed  Google Scholar 

  • Fracassetti D, Costa C, Moulay L, Tomás-barberán FA (2013) Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chem 139(1–4):578–588

    CAS  PubMed  Google Scholar 

  • Francini A, Sebastiani L (2013) Phenolic compounds in apple (Malus x domestica Borkh.): compounds characterization and stability during postharvest and after processing. Antioxidants (Basel) 2(3):181–193

    CAS  Google Scholar 

  • Fujita A, Sarkar D, Wu S, Kennelly E, Shetty K, Genovese MI (2015) Evaluation of phenolic-linked bioactives of camu-camu (Myrciaria dubia Mc. Vaugh) for antihyperglycemia, antihypertension, antimicrobial properties and cellular rejuvenation. Food Res Int 77:194–203

    CAS  Google Scholar 

  • González-abuín N, Martínez-micaelo N, Blay M, Green BD, Ardévol A (2018) Grape-seed procyanidins modulate cellular membrane potential and nutrient-induced GLP-1 secretion in STC-1 cells, (49). https://doi.org/10.1152/ajpcell.00355.2013

    Book  Google Scholar 

  • Guo X, Cheng M, Zhang X, Cao J, Wu Z, Weng P (2017) Green tea polyphenols reduce obesity in high-fat diet-induced mice by modulating intestinal microbiota composition. Int J Food Sci Technol 52(8):1723–1730

    CAS  Google Scholar 

  • Habauzit V, Morand C (2012) Evidence for a protective effect of polyphenols-containing foods on cardiovascular health: an update for clinicians. Ther Adv Chronic Dis 3(2):87–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heneghan HM, Miller N, Kerin MJ (2010) Role of microRNAs in obesity and the metabolic syndrome. Obes Rev 11(5):354–361. https://doi.org/10.1111/j.1467-789X.2009.00659.x

    Article  CAS  PubMed  Google Scholar 

  • Iacomino G, Siani A (2017) Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 12:23

    PubMed  PubMed Central  Google Scholar 

  • Ikarashi N, Toda T, Hatakeyama Y, Kusunoki Y, Kon R, Mizukami N, Kaneko M, Ogawa S, Sugiyama K (2018) Anti-hypertensive effects of acacia polyphenol in spontaneously hypertensive rats. Int J Mol Sci 19(3):700

    PubMed Central  Google Scholar 

  • Kang H (2019) MicroRNA-mediated health-promoting effects of phytochemicals. Int J Mol Sci 20(10):2535

    CAS  PubMed Central  Google Scholar 

  • Khalilpourfarshbafi M, Gholami K, Murugan DD, Abdul Sattar MZ, Abdullah NA (2019) Differential effects of dietary flavonoids on adipogenesis. Eur J Nutr 58(1):5–25

    CAS  PubMed  Google Scholar 

  • Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, Devkota HP, Ullah H, Aschner M (2019) Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev 18(7):647–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khoo HE (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61(1). https://doi.org/10.1080/16546628.2017.1361779

  • Lin D, Xiao M, Zhao J, Li Z, Xing B, Li X, Kong M, Li L, Zhang Q, Liu Y, Chen H, Qin W, Wu H, Chen S (2016) An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules 21(10):1374

    PubMed Central  Google Scholar 

  • Lin S, Wang Z, Lam KL, Zeng S, Tan BK, Hu J (2019) Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites. Food Nutr Res 63:1–12

    Google Scholar 

  • Luna-Vital D, Weiss M, Gonzalez de Mejia E (2017) Anthocyanins from purple corn ameliorated tumor necrosis factor-α-induced inflammation and insulin resistance in 3T3-L1 adipocytes via activation of insulin signaling and enhanced GLUT4 translocation. Mol Nutr Food Res 61(12):1–13

    Google Scholar 

  • Marín L, Miguélez EM, Villar CJ, Lombó F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215

    PubMed  PubMed Central  Google Scholar 

  • Meydani M, Hasan ST (2010) Dietary polyphenols and obesity. Nutrients 2(7):737–751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Milenkovic D, Jude B, Morand C (2013) miRNA as molecular target of polyphenols underlying their biological effects. Free Radic Biol Med 64:40–51. https://doi.org/10.1016/j.freeradbiomed.2013.05.046

    Article  CAS  PubMed  Google Scholar 

  • Murtaza N, Baboota RK, Jagtap S, Singh DP, Khare P, Sarma SM, Podili K, Subramanian A, Chandra TS, Bhutani KK, Boparai RK, Bishnoi M, Kondepudi KK (2014) Finger millet bran supplementation alleviates obesity-induced oxidative stress, inflammation and gut microbial derangements in high-fat diet-fed mice. Br J Nutr 112(9):1447–1458

    CAS  PubMed  Google Scholar 

  • Muscogiuri G, Cantone E, Cassarano S, Tuccinardi D, Barrea L, Savastano S, Colao A (2019) Gut microbiota: a new path to treat obesity. Int J Obes Suppl 9(1):10–19

    PubMed  PubMed Central  Google Scholar 

  • Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N, Sabater M, Gómez-Ambrosi J, Anglada R, Fernández-Formoso JA, Ricart W, Frühbeck G, Fernández-Real JM (2013) Targeting the circulating Microrna signature of Obesity. Clin Chem 59(5):781–792

    CAS  PubMed  Google Scholar 

  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E (2016) The reciprocal interactions between polyphenols and gut microbiota and effects on bioaccessibility. Nutrients 8(2):1–36. https://doi.org/10.3390/nu8020078

    Article  CAS  Google Scholar 

  • Pandey KB, Rizvi SI (2009) Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Med Cell Longev 2(5):270–278

    Google Scholar 

  • Pandima Devi K, Rajavel T, Daglia M, Nabavi SF, Bishayee A, Nabavi SM (2017) Targeting miRNAs by polyphenols: novel therapeutic strategy for cancer. Semin Cancer Biol 46:146–157

    CAS  PubMed  Google Scholar 

  • Pereira DM, Valentão P, Pereira JA, Andrade PB (2009) Phenolics: from chemistry to biology. Molecules 14(6):2202–2211

    CAS  PubMed Central  Google Scholar 

  • Popa DE, Drăgoi CM, Popa DE, Manuela C (2018) We are IntechOpen, the world’s leading publisher of Open Access books Built by scientists, for scientists TOP 1%. IntechOpen, London

    Google Scholar 

  • Priya G, Rathinavel T (2017) Evaluation of antioxidant activity in relation with their phenolic and flavanoid content of eclipta alba l leaf collected from five different geographic regions of tamil nadu evaluation of antioxidant activity in relation with their phenolic and flavanoid, (December)

    Google Scholar 

  • Roopchand DE, Carmody RN, Kuhn P, Moskal K, Turnbaugh PJ, Raskin I, Brunswick N (2015) Dietary polyphenols promote growth of the gut bacterium Akkermansia muciniphila and attenuate high fat diet-induced metabolic syndrome. Diabetes 64(8):2847–2858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosaria M, Muscatello A, Zoccali RA, Bruno A (2018) Citrus fruit polyphenols and flavonoids: applications to psychiatric disorders. In: Polyphenols: mechanisms of action in human health and disease, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Ruth O, Hamid N, Kholijah S, Mudalip A (2017) Phytochemical and pharmacological properties of vernonia amygdalina: A review, 2 September, 80–96

    Google Scholar 

  • Sarma SM, Khare P, Jagtap S, Singh DP, Baboota RK, Podili K, Boparai RK, Kaur J, Bhutani KK, Bishnoi M, Kondepudi KK (2017) Kodo millet whole grain and bran supplementation prevents high-fat diet induced derangements in a lipid profile, inflammatory status and gut bacteria in mice. Food Funct 8(3):1174–1183

    CAS  PubMed  Google Scholar 

  • Scalbert A, Williamson G (2000) Chocolate: modern science investigates an ancient medicine dietary intake and bioavailability of polyphenols 1. J Nutr 130(8):2073–2085

    Google Scholar 

  • Shi Q, Bishayee A, Bhatia D (2019) Genetic and epigenetic targets of natural dietary compounds as anticancer agents. In: Epigenetics of cancer prevention. Elsevier, Amsterdam

    Google Scholar 

  • Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM, Haddad MA, Al-Hiary M (2019) Natural polyphenols: chemical classification, definition of classes, subcategories, and structures. J AOAC Int 102(5):1397–1400

    CAS  PubMed  Google Scholar 

  • Sivamaruthi BS, Kesika P, Suganthy N, Chaiyasut C (2019) A review on role of microbiome in obesity and antiobesity properties of probiotic supplements. BioMed Res Int. https://doi.org/10.1155/2019/3291367

  • Sripad G, Prakash V, Rao MSN (1982) Extractability of polyphenols of sunflower seed in various solvents. 4(2):145–152

    Google Scholar 

  • Tanabe H, Pervin M, Goto S, Isemura M, Nakamura Y (2017) Beneficial effects of plant polyphenols on obesity. Obes Control Ther 4(3):1–16

    Google Scholar 

  • Tresserra-rimbau A, Lamuela-raventos RM, Moreno JJ (2018) Polyphenols, food and pharma. Current knowledge and directions for future. Biochem Pharmacol 156(6):186–195

    CAS  PubMed  Google Scholar 

  • Tsimogiannis D, Oreopoulou V (2019) Classification of phenolic compounds in plants. Polyphenols in Plants:263–284. https://doi.org/10.1016/b978-0-12-813768-0.00026-8

  • Vuolo MM, Lima VS, Maróstica Junior MR (2019) Phenolic compounds: structure, classification, and antioxidant power. Bioactive compounds. Elsevier Inc. https://doi.org/10.1016/B978-0-12-814774-0.00002-5

  • Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R, Bapat P, Kwun I, Shen CL (2014) Novel insights of dietary polyphenols and obesity. J Nutr Biochem 25(1):1–18

    PubMed  PubMed Central  Google Scholar 

  • Williamson G, Manach C (2005) Bioavailability and bioefficacy of polyphenols in humans.II.Review of 93 intervention studies. Am J Clin Nutr 81:243S–255S

    CAS  PubMed  Google Scholar 

  • Wu T, Grootaert C, Pitart J, Vidovic NK, Kamiloglu S, Possemiers S, Van Camp J (2018) Aronia (Aronia melanocarpa) polyphenols modulate the microbial community in a simulator of the human intestinal microbial ecosystem (SHIME) and decrease secretion of proinflammatory markers in a Caco-2/endothelial cell coculture model. Mol Nutr Food Res 62(22):1–10

    CAS  Google Scholar 

  • Yuan X, Long Y, Ji Z, Gao J, Fu T, Yan M, Zhang L, Su H, Zhang W, Wen X, Pu Z, Chen H, Wang Y, Gu X, Yan B, Kaliannan K, Shao Z (2018) Green tea liquid consumption alters the human intestinal and oral microbiome. Mol Nutr Food Res 62(12):1–15

    Google Scholar 

  • Zhang B, Yang Y, Xiang L, Zhao Z, Ye R (2019) Adipose-derived exosomes: a novel adipokine in obesity-associated diabetes. J Cell Physiol 234(10):16692–16702

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanthi Kiran Kondepudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maurya, R., Bishnoi, M., Kondepudi, K.K. (2020). Plant Polyphenols and Gut Bacteria: Role in Obesity-Induced Metabolic Endotoxaemia and Inflammation. In: Sharma, T.R., Deshmukh, R., Sonah, H. (eds) Advances in Agri-Food Biotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-15-2874-3_10

Download citation

Publish with us

Policies and ethics