Skip to main content
Log in

Mechanism of Ag-enhanced CuBi2O4 inactivation of Escherichia coli in a photocatalytic Fenton system

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

In this work, Ag/CuBi2O4 composite photocatalyst films with excellent photocatalytic sterilization properties were prepared by photodeposition. The photocatalytic activity of silver-modified CuBi2O4 (Ag/CuBi2O4) under the photocatalytic-Fenton coupling system was verified by its inactivation rate of Escherichia coli in seawater. The results showed that the photocatalytic sterilizing performance of CuBi2O4 loaded with Ag in the presence of trace amounts of H2O2 was significantly improved. 15Ag/CuBi2O4 possessed the optimal photocatalytic activity, and its sterilizing rate in 30 min could reach 96.6%. Its sterilization rate in 30 min could reach 96.6%, which is about 70% higher than that of pure CuBi2O4. Meanwhile, the mechanism of the enhanced sterilization performance of Ag/CuBi2O4 in the photocatalytic-Fenton coupled system was investigated. Firstly, according to the electrochemical results, the loading of Ag can significantly improve the charge separation efficiency of CuBi2O4. And promotes the conversion of H2O2 to hydroxyl radicals(·OH); Secondly, the valence band potential of 15Ag/CuBi2O4 is more positive than that of CuBi2O4, which suggests that Ag loading can enhance the oxidation of CuBi2O4 cavities. Comprehensive radical trapping experiments demonstrate that ·OH and holes (h+) are the main active species for inactivating Escherichia coli (E. coli). In this work, effective conversion of H2O2 to ·OH in a wide spectral range was achieved by loading Ag nanoparticles on the surface of CuBi2O4, which provides a new idea for the development of photocatalytic-Fenton coupling technology and ballast water treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. Xiang Y, Ju P, Wang Y, Sun Y, Zhang Dun YuJ (2016) Chemical etching preparation of the Bi2WO6/BiOI p-n heterojunction with enhanced photocatalytic antifouling activity under visible light. Chem Eng J 288:264–275. https://doi.org/10.1016/j.cej.2015.11.103

    Article  CAS  Google Scholar 

  2. Duan C, Yang M, Wang Q, Xue J, Yuan L, Wu H (2023) Impacts of salinity stress caused by ballast water discharge on freshwater ecosystems. Reg Stud Mar Sci 65:103079. https://doi.org/10.1016/j.rsma.2023.103079

    Article  Google Scholar 

  3. Kavil YN, Shaban YA, Alelyani SS, Al-Farawati R, Orif MI, Ghandourah MA, Schmidt M, Turki AJ, Zobidi M (2019) The removal of methylene blue as a remedy of dye-based marine pollution: a photocatalytic perspective. Res Chem Intermed 46(1):755–768. https://doi.org/10.1007/s11164-019-03988-w

    Article  CAS  Google Scholar 

  4. Nazri MKHM, Sapawe N (2020) A short review on photocatalytic reaction in diesel degradation. Mater Today Proc 31:A33–A37. https://doi.org/10.1016/j.matpr.2020.10.965

    Article  CAS  Google Scholar 

  5. Ariza-Tarazona MC, Villarreal-Chiu JF, Hernández-López JM, Rivera De la Rosa J, Barbieri V, Siligardi C, Cedillo-González EI (2020) Microplastic pollution reduction by a carbon and nitrogen-doped TiO2: effect of pH and temperature in the photocatalytic degradation process. J Hazard Mater 395:122632. https://doi.org/10.1016/j.jhazmat.2020.122632

    Article  CAS  PubMed  Google Scholar 

  6. Tao S, Yang J, Hou H, Liang S, Xiao K, Qiu J, Hu J, Liu B, Yu W, Deng H (2019) Enhanced sludge dewatering via homogeneous and heterogeneous Fenton reactions initiated by Fe-rich biochar derived from sludge. Chem Eng J 372:966–977. https://doi.org/10.1016/j.cej.2019.05.002

    Article  CAS  Google Scholar 

  7. Huang W, Brigante M, Wu F, Mousty C, Hanna K, Mailhot G (2013) Assessment of the Fe(III)–EDDS Complex in Fenton-Like processes: from the radical formation to the degradation of Bisphenol A. Environ Sci Technol 47(4):1952–1959. https://doi.org/10.1021/es304502y

    Article  CAS  PubMed  Google Scholar 

  8. Zhong X, Cai Y, Bai H, Huang W, Zhou B (2020) Visible light driven spherical CuBi2O4 with surface oxygen vacancy enhanced photocatalytic activity: catalyst fabrication, performance, and reaction mechanism. Catalysts 10(8):945. https://doi.org/10.3390/catal10080945

    Article  CAS  Google Scholar 

  9. Dong C, Xing M, Zhang J (2020) Recent progress of Photocatalytic Fenton-Like process for environmental remediation. Front Environ Chem 1:00008. https://doi.org/10.3389/fenvc.2020.00008

    Article  Google Scholar 

  10. Liu H, Wang C, Wang G (2020) Photocatalytic advanced oxidation processes for water treatment: recent advances and perspective. Chem Asian J 15(20):3239–3253. https://doi.org/10.1002/asia.202000895

    Article  CAS  PubMed  Google Scholar 

  11. Li J, Pham AN, Dai R, Wang Z, Waite TD (2020) Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: role of Cu complexes and Cu composites. J Hazard Mater 392:122261. https://doi.org/10.1016/j.jhazmat.2020.122261

    Article  CAS  PubMed  Google Scholar 

  12. Espinosa JC, Navalón S, Álvaro M, García H (2015) Silver nanoparticles supported on diamond nanoparticles as a highly efficient photocatalyst for the Fenton reaction under natural sunlight irradiation. ChemCatChem 7(17):2682–2688. https://doi.org/10.1002/cctc.201500458

    Article  CAS  Google Scholar 

  13. Uma K, Arjun N, Pan G-T, Yang TCK (2017) The photodeposition of surface plasmon Ag metal on SiO2@α-Fe2O3 nanocomposites sphere for enhancement of the photo-Fenton behavior. Appl Surf Sci 425:377–383. https://doi.org/10.1016/j.apsusc.2017.06.300

    Article  CAS  Google Scholar 

  14. Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y (2011) In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem Commun 47(25):7054–7056. https://doi.org/10.1039/c1cc11525a

    Article  CAS  Google Scholar 

  15. Fu X, Li S, Wen J, Kang F, Huang C, Zheng X (2021) Visible light-induced photo-Fenton dehydration of fructose into 5-hydroxymethylfurfural over ZnFe2O4-coated Ag nanowires. Colloid Surf A 609:125685. https://doi.org/10.1016/j.colsurfa.2020.125685

    Article  CAS  Google Scholar 

  16. Xiu Z, Cao Y, Xing Z, Zhao T, Li Z, Zhou W (2019) Wide spectral response photothermal catalysis-fenton coupling systems with 3D hierarchical Fe3O4/Ag/Bi2MoO6 ternary hetero-superstructural magnetic microspheres for efficient high-toxic organic pollutants removal. J Colloid Interf Sci 533:24–33. https://doi.org/10.1016/j.jcis.2018.08.047

    Article  CAS  Google Scholar 

  17. Zhu Y, Zhu R, Xi Y, Xu T, Yan L, Zhu J, Zhu G, He H (2018) Heterogeneous photo-Fenton degradation of Bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light. Chem Eng J 346:567–577. https://doi.org/10.1016/j.cej.2018.04.073

    Article  CAS  Google Scholar 

  18. Zhu Y, Zhu R, Yan L, Fu H, Xi Y, Zhou H, Zhu G, Zhu J, He H (2018) Visible-light Ag/AgBr/ferrihydrite catalyst with enhanced heterogeneous photo-Fenton reactivity via electron transfer from Ag/AgBr to ferrihydrite. Appl Catal B-Environ 239:280–289. https://doi.org/10.1016/j.apcatb.2018.08.025

    Article  CAS  Google Scholar 

  19. Fan G, Ning R, Yan Z, Luo J, Du B, Zhan J, Liu L, Zhang J (2021) Double photoelectron-transfer mechanism in Ag−AgCl/WO3/g-C3N4 photocatalyst with enhanced visible-light photocatalytic activity for trimethoprim degradation. J Hazard Mater 403:123964. https://doi.org/10.1016/j.jhazmat.2020.123964

    Article  CAS  PubMed  Google Scholar 

  20. Zheng J, Liu G, Jiao Z (2023) Highly efficient photo-Fenton Ag/Fe2O3/BiOI Z-Scheme heterojunction for the promoted degradation of tetracycline. Nanomaterials 13(13):1991. https://doi.org/10.3390/nano13131991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Mu Z, Chen H, Yang Y, Xie T, Lin Y (2023) Visible light-assisted efficient degradation of Rhodamine B by N-TiO2/Mn-HPMo/Ag ternary composites. Mater Res Bull 167:112436. https://doi.org/10.1016/j.materresbull.2023.112436

    Article  CAS  Google Scholar 

  22. Teng F, Hu K, Ouyang W, Fang X (2018) Photoelectric detectors based on inorganic p-Type semiconductor materials. Adv Mater 30(35):e1706262. https://doi.org/10.1002/adma.201706262

    Article  CAS  PubMed  Google Scholar 

  23. Kim T, Kim J-K, Yoo B, Xu H, Yim S, Kim S-H, Yu H-Y, Jeong JK (2020) Improved switching characteristics of p-type tin monoxide field-effect transistors through Schottky energy barrier engineering. J Mater Chem C 8(1):201–208. https://doi.org/10.1039/c9tc04345d

    Article  CAS  Google Scholar 

  24. Fu A, Chen X, Tong L, Wang D, Liu L, Ye J (2019) Remarkable visible-Light photocatalytic activity enhancement over Au/p-type TiO2 promoted by efficient interfacial charge transfer. ACS Appl Mater Interfaces 11(27):24154–24163. https://doi.org/10.1021/acsami.9b07110

    Article  CAS  PubMed  Google Scholar 

  25. Ghosh SK, Pal T (2007) Interpartical coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862. https://doi.org/10.1021/cr0680282

    Article  CAS  PubMed  Google Scholar 

  26. Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA (2017) Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 29(20):203002. https://doi.org/10.1088/1361-648X/aa60f3

    Article  PubMed  Google Scholar 

  27. Kang D, Hill JC, Park Y, Choi K-S (2016) Photoelectrochemical properties and photostabilities of high surface area CuBi2O4 and Ag-Doped CuBi2O4 photocathodes. Chem Mater 28(12):4331–4340. https://doi.org/10.1021/acs.chemmater.6b01294

    Article  CAS  Google Scholar 

  28. Song Y, Zhou F, Chai Y, Zhan S (2021) Study on high antibacterial RGO/Bi2WO6 microspheres combined with PEVE coating for marine sterilization under visible light. Res Chem Intermed 47(6):2297–2310. https://doi.org/10.1007/s11164-021-04400-2

    Article  CAS  Google Scholar 

  29. Wang F, Zhou F, Zhan S, He Q, Song Y, Zhang C, Lai J (2021) Morphology modulation and performance optimization of nanopetal-based Ag-modified Bi2O2CO3 as an inactivating photocatalytic material. Environ Res 198:111256. https://doi.org/10.1016/j.envres.2021.111256

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Zhou F, Zhan S, Song Y, Wang F, Lai J (2021) The enhanced photocatalytic inactivation of marine microorganisms over ZnO supported Ag quantum dots by the synthesis of H2O2. Environ Res 197:111129. https://doi.org/10.1016/j.envres.2021.111129

    Article  CAS  PubMed  Google Scholar 

  31. Nogueira AC, Gomes LE, Ferencz JAP, Rodrigues JEFS, Gonçalves RV, Wender H (2019) Improved visible light photoactivity of CuBi2O4/CuO Heterojunctions for photodegradation of methylene blue and metronidazole. J Phys Chem C 123(42):25680–25690. https://doi.org/10.1021/acs.jpcc.9b06907

    Article  CAS  Google Scholar 

  32. Biesinger MC (2017) Advanced analysis of copper X-ray photoelectron spectra. Surf Interface Anal 49(13):1325–1334. https://doi.org/10.1002/sia.6239

    Article  CAS  Google Scholar 

  33. Gottesman R, Levine I, Schleuning M, Irani R, Abou-Ras D, Dittrich T, Friedrich D, van de Krol R (2021) Overcoming phase-purity challenges in complex metal oxide photoelectrodes: a case study of CuBi2O4. Adv Energy Mater 11(11):2003474. https://doi.org/10.1002/aenm.202003474

    Article  CAS  Google Scholar 

  34. Kim JH, Adishev A, Kim J, Kim YS, Cho S, Lee JS (2018) All-Bismuth-Based oxide tandem cell for solar overall water splitting. ACS Appl Energy Mater 1(12):6694–6699. https://doi.org/10.1021/acsaem.8b01025

    Article  CAS  Google Scholar 

  35. Abdel-wahab MS, El Emam HK, El Rouby WMA (2023) Sputtered Ag-doped NiO thin films: structural, optical, and electrocatalytic activity toward methanol oxidation. J Mater Sci-Mater El 34(22):1637. https://doi.org/10.1007/s10854-023-11029-x

    Article  CAS  Google Scholar 

  36. Wu X, Lu C, Liu J, Song S, Sun C (2017) Constructing efficient solar light photocatalytic system with Ag-introduced carbon nitride for organic pollutant elimination. Appl Catal B-Environ 217:232–240. https://doi.org/10.1016/j.apcatb.2017.06.001

    Article  CAS  Google Scholar 

  37. Hua C, Wang J, Dong X, Wang Y, Zheng N, Xue M, Zhang X (2020) In situ plasmonic Bi grown on I doped Bi2WO6 for enhanced visible-light-driven photocatalysis to mineralize diverse refractory organic pollutants. Sep Purif Technol 250:117119. https://doi.org/10.1016/j.seppur.2020.117119

    Article  CAS  Google Scholar 

  38. Xiao J, Yang W, Gao S, Sun C, Li Q (2018) Fabrication of ultrafine ZnFe2O4 nanoparticles for efficient photocatalytic reduction CO2 under visible light illumination. J Mater Sci Technol 34(12):2331–2336. https://doi.org/10.1016/j.jmst.2018.06.001

    Article  CAS  Google Scholar 

  39. Jiang X, Gong H, Liu Q, Song M, Huang C (2020) In situ construction of NiSe/Mn0.5Cd0.5S composites for enhanced photocatalytic hydrogen production under visible light. Appl Catal B-Environ 268:118439. https://doi.org/10.1016/j.apcatb.2019.118439

    Article  CAS  Google Scholar 

  40. Raza W, Faraz M (2020) Novel g-C3N4/Fe-ZnO/RGO nanocomposites with boosting visible light photocatalytic activity for MB, Cr (VI), and outstanding catalytic activity toward para-nitrophenol reduction. Nanotechnology 31(32):325603. https://doi.org/10.1088/1361-6528/ab8c07

    Article  CAS  PubMed  Google Scholar 

  41. Sun X, Huang H, Zhao Q, Ma T, Wang L (2020) Thin-Layered photocatalysts. Adv Funct Mater 30(22):1910005. https://doi.org/10.1002/adfm.201910005

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52271340, 51879018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Zhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 36441 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chi, Y., Sun, J. et al. Mechanism of Ag-enhanced CuBi2O4 inactivation of Escherichia coli in a photocatalytic Fenton system. Reac Kinet Mech Cat 137, 1225–1238 (2024). https://doi.org/10.1007/s11144-024-02569-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-024-02569-2

Keywords

Navigation